Theory of anchoring on a two-dimensionally grooved surface

Junichi Fukuda, Jin Seog Gwag, Makoto Yoneya, Hiroshi Yokoyama

Research output: Contribution to journalArticle

29 Citations (Scopus)

Abstract

We investigate analytically the anchoring of a nematic liquid crystal on a two-dimensionally grooved surface of arbitrary shape, induced by the elastic distortions of a liquid crystal adjacent to the surface. Our theoretical framework applied to a surface with square grooves reveals that such a surface can exhibit bistable anchoring, while a direct extension of a well-known theory of Berreman [Phys. Rev. Lett. 28, 1683 (1972)] results in no azimuthal anchoring in the so-called one-constant case (K1 = K2 = K3, with K1, K2, and K3 being the splay, twist, and bend elastic constants, respectively). We show under the assumption of K1 = K2 =K that the direction of the bistable easy axes and the anchoring strength crucially depend on the ratios K3 /K and K24 /K, where K24 is the saddle-splay surface elastic constant. To demonstrate the applicability of our theory to general cases and to elucidate the effect of surface shape and the elastic constants on the properties of surface anchoring, we also consider several specific cases of interest; one-dimensional grooves of arbitrary shape, rhombic grooves, and surfaces possessing 2N -fold symmetry, including hexagonal grooves, and show the following: (i) The rescaled anchoring energy f (I) /f (π/2) of one-dimensional grooves, with I being the angle between the director n and the groove direction, is independent of the groove shape. (ii) Whether two diagonal axes of rhombic grooves can become easy axes depends sensitively on K3 /K, K24 /K and the angle α between the grooves. The angle α yielding the maximum anchoring strength for given groove pitch and amplitude depends again on K3 /K and K24 /K; in some cases α=0 (one-dimensional grooves), and in other cases α 0, gives the maximum anchoring strength. Square grooves (α=π/2) do not necessarily exhibit the largest anchoring strength. (iii) A surface possessing 2N -fold symmetry can yield N -stable azimuthal anchoring. However, when K1 = K2 = K3 and N>3, azimuthal anchoring is totally absent irrespective of the value of K24. The direction of the easy axes depends on K3 /K, K24 /K, and whether N is even or odd.

Original languageEnglish
Article number011702
JournalPhysical Review E - Statistical, Nonlinear, and Soft Matter Physics
Volume77
Issue number1
DOIs
Publication statusPublished - Jan 10 2008
Externally publishedYes

Fingerprint

grooves
Elastic Constants
Angle
elastic properties
Fold
Symmetry
liquid crystals
Arbitrary
Nematic Liquid Crystal
Saddle
Twist
Hexagon
Liquid Crystal
saddles
symmetry
Adjacent
Odd
Energy
Demonstrate

All Science Journal Classification (ASJC) codes

  • Statistical and Nonlinear Physics
  • Statistics and Probability
  • Condensed Matter Physics

Cite this

Theory of anchoring on a two-dimensionally grooved surface. / Fukuda, Junichi; Gwag, Jin Seog; Yoneya, Makoto; Yokoyama, Hiroshi.

In: Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, Vol. 77, No. 1, 011702, 10.01.2008.

Research output: Contribution to journalArticle

@article{e5070f88d8734311974cd3769263e940,
title = "Theory of anchoring on a two-dimensionally grooved surface",
abstract = "We investigate analytically the anchoring of a nematic liquid crystal on a two-dimensionally grooved surface of arbitrary shape, induced by the elastic distortions of a liquid crystal adjacent to the surface. Our theoretical framework applied to a surface with square grooves reveals that such a surface can exhibit bistable anchoring, while a direct extension of a well-known theory of Berreman [Phys. Rev. Lett. 28, 1683 (1972)] results in no azimuthal anchoring in the so-called one-constant case (K1 = K2 = K3, with K1, K2, and K3 being the splay, twist, and bend elastic constants, respectively). We show under the assumption of K1 = K2 =K that the direction of the bistable easy axes and the anchoring strength crucially depend on the ratios K3 /K and K24 /K, where K24 is the saddle-splay surface elastic constant. To demonstrate the applicability of our theory to general cases and to elucidate the effect of surface shape and the elastic constants on the properties of surface anchoring, we also consider several specific cases of interest; one-dimensional grooves of arbitrary shape, rhombic grooves, and surfaces possessing 2N -fold symmetry, including hexagonal grooves, and show the following: (i) The rescaled anchoring energy f (I) /f (π/2) of one-dimensional grooves, with I being the angle between the director n and the groove direction, is independent of the groove shape. (ii) Whether two diagonal axes of rhombic grooves can become easy axes depends sensitively on K3 /K, K24 /K and the angle α between the grooves. The angle α yielding the maximum anchoring strength for given groove pitch and amplitude depends again on K3 /K and K24 /K; in some cases α=0 (one-dimensional grooves), and in other cases α 0, gives the maximum anchoring strength. Square grooves (α=π/2) do not necessarily exhibit the largest anchoring strength. (iii) A surface possessing 2N -fold symmetry can yield N -stable azimuthal anchoring. However, when K1 = K2 = K3 and N>3, azimuthal anchoring is totally absent irrespective of the value of K24. The direction of the easy axes depends on K3 /K, K24 /K, and whether N is even or odd.",
author = "Junichi Fukuda and Gwag, {Jin Seog} and Makoto Yoneya and Hiroshi Yokoyama",
year = "2008",
month = "1",
day = "10",
doi = "10.1103/PhysRevE.77.011702",
language = "English",
volume = "77",
journal = "Physical Review E",
issn = "2470-0045",
publisher = "American Physical Society",
number = "1",

}

TY - JOUR

T1 - Theory of anchoring on a two-dimensionally grooved surface

AU - Fukuda, Junichi

AU - Gwag, Jin Seog

AU - Yoneya, Makoto

AU - Yokoyama, Hiroshi

PY - 2008/1/10

Y1 - 2008/1/10

N2 - We investigate analytically the anchoring of a nematic liquid crystal on a two-dimensionally grooved surface of arbitrary shape, induced by the elastic distortions of a liquid crystal adjacent to the surface. Our theoretical framework applied to a surface with square grooves reveals that such a surface can exhibit bistable anchoring, while a direct extension of a well-known theory of Berreman [Phys. Rev. Lett. 28, 1683 (1972)] results in no azimuthal anchoring in the so-called one-constant case (K1 = K2 = K3, with K1, K2, and K3 being the splay, twist, and bend elastic constants, respectively). We show under the assumption of K1 = K2 =K that the direction of the bistable easy axes and the anchoring strength crucially depend on the ratios K3 /K and K24 /K, where K24 is the saddle-splay surface elastic constant. To demonstrate the applicability of our theory to general cases and to elucidate the effect of surface shape and the elastic constants on the properties of surface anchoring, we also consider several specific cases of interest; one-dimensional grooves of arbitrary shape, rhombic grooves, and surfaces possessing 2N -fold symmetry, including hexagonal grooves, and show the following: (i) The rescaled anchoring energy f (I) /f (π/2) of one-dimensional grooves, with I being the angle between the director n and the groove direction, is independent of the groove shape. (ii) Whether two diagonal axes of rhombic grooves can become easy axes depends sensitively on K3 /K, K24 /K and the angle α between the grooves. The angle α yielding the maximum anchoring strength for given groove pitch and amplitude depends again on K3 /K and K24 /K; in some cases α=0 (one-dimensional grooves), and in other cases α 0, gives the maximum anchoring strength. Square grooves (α=π/2) do not necessarily exhibit the largest anchoring strength. (iii) A surface possessing 2N -fold symmetry can yield N -stable azimuthal anchoring. However, when K1 = K2 = K3 and N>3, azimuthal anchoring is totally absent irrespective of the value of K24. The direction of the easy axes depends on K3 /K, K24 /K, and whether N is even or odd.

AB - We investigate analytically the anchoring of a nematic liquid crystal on a two-dimensionally grooved surface of arbitrary shape, induced by the elastic distortions of a liquid crystal adjacent to the surface. Our theoretical framework applied to a surface with square grooves reveals that such a surface can exhibit bistable anchoring, while a direct extension of a well-known theory of Berreman [Phys. Rev. Lett. 28, 1683 (1972)] results in no azimuthal anchoring in the so-called one-constant case (K1 = K2 = K3, with K1, K2, and K3 being the splay, twist, and bend elastic constants, respectively). We show under the assumption of K1 = K2 =K that the direction of the bistable easy axes and the anchoring strength crucially depend on the ratios K3 /K and K24 /K, where K24 is the saddle-splay surface elastic constant. To demonstrate the applicability of our theory to general cases and to elucidate the effect of surface shape and the elastic constants on the properties of surface anchoring, we also consider several specific cases of interest; one-dimensional grooves of arbitrary shape, rhombic grooves, and surfaces possessing 2N -fold symmetry, including hexagonal grooves, and show the following: (i) The rescaled anchoring energy f (I) /f (π/2) of one-dimensional grooves, with I being the angle between the director n and the groove direction, is independent of the groove shape. (ii) Whether two diagonal axes of rhombic grooves can become easy axes depends sensitively on K3 /K, K24 /K and the angle α between the grooves. The angle α yielding the maximum anchoring strength for given groove pitch and amplitude depends again on K3 /K and K24 /K; in some cases α=0 (one-dimensional grooves), and in other cases α 0, gives the maximum anchoring strength. Square grooves (α=π/2) do not necessarily exhibit the largest anchoring strength. (iii) A surface possessing 2N -fold symmetry can yield N -stable azimuthal anchoring. However, when K1 = K2 = K3 and N>3, azimuthal anchoring is totally absent irrespective of the value of K24. The direction of the easy axes depends on K3 /K, K24 /K, and whether N is even or odd.

UR - http://www.scopus.com/inward/record.url?scp=40749118542&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=40749118542&partnerID=8YFLogxK

U2 - 10.1103/PhysRevE.77.011702

DO - 10.1103/PhysRevE.77.011702

M3 - Article

AN - SCOPUS:40749118542

VL - 77

JO - Physical Review E

JF - Physical Review E

SN - 2470-0045

IS - 1

M1 - 011702

ER -