TY - JOUR
T1 - Thermodynamic analyses of the orthorhombic-to-tetragonal phase transition in Pr2−xNdxNiO4+δunder controlled oxygen partial pressures
AU - Niwa, Eiki
AU - Sato, Tsubasa
AU - Hashimoto, Takuya
N1 - Funding Information:
The authors thank Prof. Y. Takeda and Mr T. Mizoguchi (Mie University) for their useful discussion of the estimation procedure of the oxygen content by ignition loss tests. A part of this study was financially supported by the Nihon University President Grant Initiative.
Publisher Copyright:
© The Royal Society of Chemistry 2020.
PY - 2020/9/14
Y1 - 2020/9/14
N2 - The behavior of the structural orthorhombic-tetragonal phase transition of Pr2−xNdxNiO4+δ, a candidate material for solid oxide fuel cells and oxygen permeation membranes, was investigated by differential scanning calorimetry and thermogravimetry (TG), under controlled oxygen partial pressures,P(O2). The structural phase transition temperature,TP, of Pr2−xNdxNiO4+δincreased with increasing Nd content,x, or increasingP(O2). The phase transitions of all compositions involved discrete variations in the oxygen content, Δδ, which were observed in the TG curves under variousP(O2) values. Δδof Pr2−xNdxNiO4+δwith 0.5 ≤x≤ 1.5 were between those of Nd2NiO4+δand Pr2NiO4+δ, regardless ofP(O2), and were slightly increased with decreasingP(O2). It was proposed that the effect of the valence change of the Pr ion on Δδwas decreased with increasing Nd content. The standard enthalpy change, ΔH°, and entropy change, ΔS°, of the phase transition were estimated from the Ellingham diagrams and van't Hoff plots, which were prepared from the relationship betweenP(O2) andTPusing an ideal solution model. ΔS° was decreased with increasing Nd content for the specimens with 0.0 ≤x≤ 1.5. The ΔH° of Pr2−xNdxNiO4+δwith 0.0 ≤x≤ 1.5 was almost constant for all Nd contents. The increase in the phase transition temperature of Pr2−xNdxNiO4+δwith increasingxfrom 0.0 to 1.5 was successfully explained using the calculated values of ΔH° and ΔS°.
AB - The behavior of the structural orthorhombic-tetragonal phase transition of Pr2−xNdxNiO4+δ, a candidate material for solid oxide fuel cells and oxygen permeation membranes, was investigated by differential scanning calorimetry and thermogravimetry (TG), under controlled oxygen partial pressures,P(O2). The structural phase transition temperature,TP, of Pr2−xNdxNiO4+δincreased with increasing Nd content,x, or increasingP(O2). The phase transitions of all compositions involved discrete variations in the oxygen content, Δδ, which were observed in the TG curves under variousP(O2) values. Δδof Pr2−xNdxNiO4+δwith 0.5 ≤x≤ 1.5 were between those of Nd2NiO4+δand Pr2NiO4+δ, regardless ofP(O2), and were slightly increased with decreasingP(O2). It was proposed that the effect of the valence change of the Pr ion on Δδwas decreased with increasing Nd content. The standard enthalpy change, ΔH°, and entropy change, ΔS°, of the phase transition were estimated from the Ellingham diagrams and van't Hoff plots, which were prepared from the relationship betweenP(O2) andTPusing an ideal solution model. ΔS° was decreased with increasing Nd content for the specimens with 0.0 ≤x≤ 1.5. The ΔH° of Pr2−xNdxNiO4+δwith 0.0 ≤x≤ 1.5 was almost constant for all Nd contents. The increase in the phase transition temperature of Pr2−xNdxNiO4+δwith increasingxfrom 0.0 to 1.5 was successfully explained using the calculated values of ΔH° and ΔS°.
UR - http://www.scopus.com/inward/record.url?scp=85090177097&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85090177097&partnerID=8YFLogxK
U2 - 10.1039/d0dt02119a
DO - 10.1039/d0dt02119a
M3 - Article
C2 - 32812578
AN - SCOPUS:85090177097
SN - 1477-9226
VL - 49
SP - 11931
EP - 11941
JO - Dalton Transactions
JF - Dalton Transactions
IS - 34
ER -