TY - JOUR
T1 - Thermodynamic considerations of the vapor phase reactions in III-nitride metal organic vapor phase epitaxy
AU - Sekiguchi, Kazuki
AU - Shirakawa, Hiroki
AU - Chokawa, Kenta
AU - Araidai, Masaaki
AU - Kangawa, Yoshihiro
AU - Kakimoto, Koichi
AU - Shiraishi, Kenji
PY - 2017/4
Y1 - 2017/4
N2 - We analyzed the metal organic vapor phase epitaxial growth mechanism of the III-nitride semiconductors GaN, AlN, and InN by first-principles calculations and thermodynamic analyses. In these analyses, we investigated the decomposition processes of the group III source gases X(CH3)3 (X = Ga, Al, In) at finite temperatures and determined whether the (CH3)2GaNH2 adduct can be formed or not. The results of our calculations show that the (CH3)2GaNH2 adduct cannot be formed in the gas phase in GaN metal organic vapor phase epitaxy (MOVPE), whereas, in AlN MOVPE, the formation of the (CH3)2AlNH2 adduct in the gas phase is exclusive. In the case of GaN MOVPE, trimethylgallium (TMG, [Ga(CH3)3]) decomposition into Ga gas on the growth surface with the assistance of H2 carrier gas, instead of the formation of the (CH3)2GaNH2 adduct, occurs almost exclusively. Moreover, in the case of InN MOVPE, the formation of the (CH3)2InNH2 adduct does not occur and it is relatively easy to produce In gas even without H2 in the carrier gas.
AB - We analyzed the metal organic vapor phase epitaxial growth mechanism of the III-nitride semiconductors GaN, AlN, and InN by first-principles calculations and thermodynamic analyses. In these analyses, we investigated the decomposition processes of the group III source gases X(CH3)3 (X = Ga, Al, In) at finite temperatures and determined whether the (CH3)2GaNH2 adduct can be formed or not. The results of our calculations show that the (CH3)2GaNH2 adduct cannot be formed in the gas phase in GaN metal organic vapor phase epitaxy (MOVPE), whereas, in AlN MOVPE, the formation of the (CH3)2AlNH2 adduct in the gas phase is exclusive. In the case of GaN MOVPE, trimethylgallium (TMG, [Ga(CH3)3]) decomposition into Ga gas on the growth surface with the assistance of H2 carrier gas, instead of the formation of the (CH3)2GaNH2 adduct, occurs almost exclusively. Moreover, in the case of InN MOVPE, the formation of the (CH3)2InNH2 adduct does not occur and it is relatively easy to produce In gas even without H2 in the carrier gas.
UR - http://www.scopus.com/inward/record.url?scp=85017150723&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85017150723&partnerID=8YFLogxK
U2 - 10.7567/JJAP.56.04CJ04
DO - 10.7567/JJAP.56.04CJ04
M3 - Article
AN - SCOPUS:85017150723
VL - 56
JO - Japanese Journal of Applied Physics, Part 1: Regular Papers & Short Notes
JF - Japanese Journal of Applied Physics, Part 1: Regular Papers & Short Notes
SN - 0021-4922
IS - 4
M1 - 04CJ04
ER -