Abstract
Numerical simulation of postulated severe-accident sequences in liquid-metal fast reactors (LMFRs) requires thermodynamic properties of reactor-core materials over wide temperature and pressure ranges. Here an improved analytic equation-of-state (EOS) model using flexible thermodynamic functions is newly developed for a multiphase, multicomponent fluid-dynamics code for LMFR safety analysis. Extension of a van der Waals type equation for vapor phase is also proposed to include the dimerization process of sodium vapor and thereby enables us to predict sodium vapor properties with adequate accuracy. The present EOS model is designed to have adequate accuracy at high temperature and high pressure and to consistently satisfy basic thermodynamic relationships over a wide temperature range without deterioration of the computing efficiency. The newly introduced fluid-dynamic algorithm for pressure iteration consistently coupled with the EOS model is also described in the present paper.
Original language | English |
---|---|
Pages (from-to) | 177-191 |
Number of pages | 15 |
Journal | Nuclear Engineering and Design |
Volume | 183 |
Issue number | 3 |
DOIs | |
Publication status | Published - Jul 15 1998 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Nuclear and High Energy Physics
- Nuclear Energy and Engineering
- Materials Science(all)
- Safety, Risk, Reliability and Quality
- Waste Management and Disposal
- Mechanical Engineering