Thermoelectric properties of Al-doped ZnO as a promising oxide material for high-temperature thermoelectric conversion

Toshiki Tsubota, Michitaka Ohtaki, Koichi Eguchi, Hiromichi Arai

    Research output: Contribution to journalArticlepeer-review

    333 Citations (Scopus)

    Abstract

    The thermoelectric properties of a mixed oxide (Zn1-xAlx)O (x = 0, 0.005, 0.01, 0.02, 0.05) are investigated in terms of materials for high-temperature thermoelectric conversion. The electrical conductivity, σ, of the oxide increases on Al-doping by more than three orders of magnitude up to ca. 103 S cm-1 at room temperature, showing metallic behaviour. The Seebeck coefficient, S, of (Zn1-xAlx)O (x > 0) shows a general trend in which the absolute value increases gradually from ca. -100 μV K-1 at room temperature to ca. -200 μV K-1 at 1000°C. As a consequence, the power factor, S2σ, reaches ca. 15 × 10-4 W m-1 K-2, the largest value of all reported oxide materials. The thermal conductivity, κ, of the oxide decreases with increasing temperature, owing to a decrease in the lattice thermal conductivity which is revealed to be dominant in the overall κ. In spite of the considerably large values of κ-, the figure of merit, Z = S2σ/κ, reaches 0.24 × 10-3 K-1 for (Zn0.98Al0.02)O at 1000°C. The extremely large power factor of (Zn1-xAlx)O compared to other metal oxides can be attributed to the high carrier mobility revealed by the Hall measurements, presumably resulting from a relatively covalent character of the Zn-O bond owing to a fairly small difference of the electronegativities of Zn and O. The dimensionless figure of merit, ZT, of 0.30 attained by (Zn0.98Al0.02)O at 1000°C demonstrates the potential usefulness of the oxide.

    Original languageEnglish
    Pages (from-to)85-90
    Number of pages6
    JournalJournal of Materials Chemistry
    Volume7
    Issue number1
    DOIs
    Publication statusPublished - Jan 1997

    All Science Journal Classification (ASJC) codes

    • Chemistry(all)
    • Materials Chemistry

    Fingerprint Dive into the research topics of 'Thermoelectric properties of Al-doped ZnO as a promising oxide material for high-temperature thermoelectric conversion'. Together they form a unique fingerprint.

    Cite this