Thermoelectric properties of sorted semiconducting single-walled carbon nanotube sheets

Wenxin Huang, Eriko Tokunaga, Yuki Nakashima, Tsuyohiko Fujigaya

    Research output: Contribution to journalArticlepeer-review

    19 Citations (Scopus)

    Abstract

    Single-walled carbon nanotubes (SWNTs), especially their semiconducting type, are promising thermoelectric (TE) materials due to their high Seebeck coefficient. In this study, the in-plane Seebeck coefficient (S), electrical conductivity (σ), and thermal conductivity (κ) of sorted semiconducting SWNT (s-SWNT) free-standing sheets with different s-SWNT purities are measured to determine the figure of merit ZT. We find that the ZT value of the sheets increases with increasing s-SWNT purity, mainly due to an increase in Seebeck coefficient while the thermal conductivity remaining constant, which experimentally proved the superiority of the high purity s-SWNT as TE materials for the first time. In addition, from the comparison between sorted and unsorted SWNT sheets, it is recognized that the difference of ZT between unsorted SWNT and high-purity s-SWNT sheet is not remarkable, which suggests the control of carrier density is necessary to further clarify the superiority of SWNT sorting for TE applications.

    Original languageEnglish
    Pages (from-to)97-104
    Number of pages8
    JournalScience and Technology of Advanced Materials
    Volume20
    Issue number1
    DOIs
    Publication statusPublished - Jan 1 2019

    All Science Journal Classification (ASJC) codes

    • Materials Science(all)

    Fingerprint

    Dive into the research topics of 'Thermoelectric properties of sorted semiconducting single-walled carbon nanotube sheets'. Together they form a unique fingerprint.

    Cite this