Three-dimensional Nanowire Structures for Ultra-Fast Separation of DNA, Protein and RNA Molecules

Sakon Rahong, Takao Yasui, Takeshi Yanagida, Kazuki Nagashima, Masaki Kanai, Gang Meng, Yong He, Fuwei Zhuge, Noritada Kaji, Tomoji Kawai, Yoshinobu Baba

Research output: Contribution to journalArticle

19 Citations (Scopus)

Abstract

Separation and analysis of biomolecules represent crucial processes for biological and biomedical engineering development; however, separation resolution and speed for biomolecules analysis still require improvements. To achieve separation and analysis of biomolecules in a short time, the use of highly-ordered nanostructures fabricated by top-down or bottom-up approaches have been proposed. Here, we reported on the use of three-dimensional (3D) nanowire structures embedded in microchannels fabricated by a bottom-up approach for ultrafast separation of small biomolecules, such as DNA, protein, and RNA molecules. The 3D nanowire structures could analyze a mixture of DNA molecules (50-1000 bp) within 50 s, a mixture of protein molecules (20-340 kDa) within 5 s, and a mixture of RNA molecules (100-1000 bases) within 25 s. And, we could observe the electrophoretic mobility difference of biomolecules as a function of molecular size in the 3D nanowire structures. Since the present methodology allows users to control the pore size of sieving materials by varying the number of cycles for nanowire growth, the 3D nanowire structures have a good potential for use as alternatives for other sieving materials.

Original languageEnglish
Article number10584
JournalScientific reports
Volume5
DOIs
Publication statusPublished - Jun 15 2015
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • General

Fingerprint Dive into the research topics of 'Three-dimensional Nanowire Structures for Ultra-Fast Separation of DNA, Protein and RNA Molecules'. Together they form a unique fingerprint.

  • Cite this