Three-dimensional reference interaction site model self-consistent field analysis of solvent and substituent effects on the absorption spectra of Brooker's merocyanine

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

Solvent and substituent effects on the absorption spectra of Brooker's merocyanine (BM) are investigated using the three-dimensional reference interaction site model self-consistent field method and time-dependent density functional theory. The π-π∗ excitation energies are computed for BM and its derivative 2,6-di-tert-butyl (di-t-Bu) BM. The behaviors of the computed excitation energies with increasing solvent polarity are in good agreement with those of the corresponding experimental measurements. In addition, analysis of the solute-solvent interaction energies and spatial distribution functions reveals that the effects of the solvent on the absorption spectra are reduced by the steric hindrance of the t-Bu groups. Furthermore, from the difference in the solute-solvent interaction energies of BM and di-t-Bu BM, it is shown that the effect of the t-Bu substituents on the absorption spectrum is greater in high-polarity solvents.

Original languageEnglish
Pages (from-to)1655-1663
Number of pages9
JournalJournal of Computational Chemistry
Volume36
Issue number22
DOIs
Publication statusPublished - Aug 1 2015

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Computational Mathematics

Cite this