Time series data augmentation for neural networks by time warping with a discriminative teacher

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Citations (Scopus)

Abstract

Neural networks have become a powerful tool in pattern recognition and part of their success is due to generalization from using large datasets. However, unlike other domains, time series classification datasets are often small. In order to address this problem, we propose a novel time series data augmentation called guided warping. While many data augmentation methods are based on random transformations, guided warping exploits the element alignment properties of Dynamic Time Warping (DTW) and shapeDTW, a high-level DTW method based on shape descriptors, to deterministically warp sample patterns. In this way, the time series are mixed by warping the features of a sample pattern to match the time steps of a reference pattern. Furthermore, we introduce a discriminative teacher in order to serve as a directed reference for the guided warping. We evaluate the method on all 85 datasets in the 2015 UCR Time Series Archive with a deep convolutional neural network (CNN) and a recurrent neural network (RNN). The code with an easy to use implementation can be found at https://github.com/uchidalab/time_series_augmentation.

Original languageEnglish
Title of host publicationProceedings of ICPR 2020 - 25th International Conference on Pattern Recognition
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3558-3565
Number of pages8
ISBN (Electronic)9781728188089
DOIs
Publication statusPublished - 2020
Event25th International Conference on Pattern Recognition, ICPR 2020 - Virtual, Milan, Italy
Duration: Jan 10 2021Jan 15 2021

Publication series

NameProceedings - International Conference on Pattern Recognition
ISSN (Print)1051-4651

Conference

Conference25th International Conference on Pattern Recognition, ICPR 2020
Country/TerritoryItaly
CityVirtual, Milan
Period1/10/211/15/21

All Science Journal Classification (ASJC) codes

  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Time series data augmentation for neural networks by time warping with a discriminative teacher'. Together they form a unique fingerprint.

Cite this