Timer-based composition of fault-containing self-stabilizing protocols

Yukiko Yamauchi, Sayaka Kamei, Fukuhito Ooshita, Yoshiaki Katayama, Hirotsugu Kakugawa, Toshimitsu Masuzawa

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

One of the desired properties of distributed systems is self-adaptability against faults. Self-stabilizing protocols provide autonomous recovery from any finite number of transient faults. However, in practice, catastrophic faults rarely occur, while small-scale faults are more likely to occur. Fault-containing self-stabilizing protocols promise not only self-stabilization but also containment of the effect of small-scale faults, i.e., they promise quick recovery and small effect for small-scale faults. Hierarchical composition of self-stabilizing protocols is expected to ease the design of new self-stabilizing protocols. However, existing composition techniques for self-stabilizing protocols cannot preserve the fault-containment property of source protocols. In this paper, we propose a novel timer-based hierarchical composition of fault-containing self-stabilizing protocols that preserves the fault-containment property of source protocols. To implement timers, we propose a local neighborhood synchronizer that synchronizes limited number of processes during a short time after a fault without involving the entire network into the synchronization. The proposed composition technique facilitates the design of new fault-containing self-stabilizing protocols and enhances the reusability of existing fault-containing self-stabilizing protocols.

Original languageEnglish
Pages (from-to)1802-1816
Number of pages15
JournalInformation sciences
Volume180
Issue number10
DOIs
Publication statusPublished - May 15 2010
Externally publishedYes

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Control and Systems Engineering
  • Theoretical Computer Science
  • Software
  • Computer Science Applications
  • Information Systems and Management
  • Artificial Intelligence

Cite this

Yamauchi, Y., Kamei, S., Ooshita, F., Katayama, Y., Kakugawa, H., & Masuzawa, T. (2010). Timer-based composition of fault-containing self-stabilizing protocols. Information sciences, 180(10), 1802-1816. https://doi.org/10.1016/j.ins.2009.10.003