Toward a phenomenological description of hydrogen-induced decohesion at particle/matrix interfaces

Research output: Contribution to journalArticle

72 Citations (Scopus)

Abstract

A phenomenological traction-separation law that describes the cohesion of an inclusion/matrix interface in the presence of hydrogen is suggested such that the associated reversible work of separation during fast decohesion is exactly equal to that predicted by the thermodynamic theory of Hirth and Rice (Metall. Trans. 11A (1980) 1501) and Rice and Wang (Mater. Sci. Eng. A 107 (1989) 23) in the corresponding limit. The law is used to study interfacial debonding around an elastic inclusion imbedded in an elastoplastically deforming matrix while transient hydrogen transport takes place in the matrix, the inclusion, and the opening interfacial channel. Interfacial separation is modeled through cohesive elements and is simulated incrementally within the updated Lagrangian formulation scheme used to model bulk material elastoplasticity. For material data pertaining to nickel-base alloy 690, the numerical results indicate that both hydrogen-induced reduction of interfacial cohesion and matrix-softening lead to a reduction of stress at which void nucleation commences relatively to case of a hydrogen-free material. On the other hand, there is a competitive effect on the void nucleation strain: while cohesion reduction decreases this strain, matrix softening increases it, and its final value depends on the outcome of this competition. Thus the suggested model of the hydrogen effect on cohesion, although calibrated in accordance with the fast-separation limit (small cohesion reduction) of the Hirth-Rice-Wang theory, does allow for internal material failure with a clear and substantial effect on the external macroscopic loads.

Original languageEnglish
Pages (from-to)1509-1531
Number of pages23
JournalJournal of the Mechanics and Physics of Solids
Volume51
Issue number8
DOIs
Publication statusPublished - Aug 1 2003

Fingerprint

cohesion
rice
Hydrogen
hydrogen
matrices
inclusions
softening
voids
Nucleation
elastoplasticity
nucleation
Elastoplasticity
traction
Debonding
Nickel
nickel
Thermodynamics
formulations
thermodynamics

All Science Journal Classification (ASJC) codes

  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Cite this

@article{894c31521fce4de3b8da4f123c205ab2,
title = "Toward a phenomenological description of hydrogen-induced decohesion at particle/matrix interfaces",
abstract = "A phenomenological traction-separation law that describes the cohesion of an inclusion/matrix interface in the presence of hydrogen is suggested such that the associated reversible work of separation during fast decohesion is exactly equal to that predicted by the thermodynamic theory of Hirth and Rice (Metall. Trans. 11A (1980) 1501) and Rice and Wang (Mater. Sci. Eng. A 107 (1989) 23) in the corresponding limit. The law is used to study interfacial debonding around an elastic inclusion imbedded in an elastoplastically deforming matrix while transient hydrogen transport takes place in the matrix, the inclusion, and the opening interfacial channel. Interfacial separation is modeled through cohesive elements and is simulated incrementally within the updated Lagrangian formulation scheme used to model bulk material elastoplasticity. For material data pertaining to nickel-base alloy 690, the numerical results indicate that both hydrogen-induced reduction of interfacial cohesion and matrix-softening lead to a reduction of stress at which void nucleation commences relatively to case of a hydrogen-free material. On the other hand, there is a competitive effect on the void nucleation strain: while cohesion reduction decreases this strain, matrix softening increases it, and its final value depends on the outcome of this competition. Thus the suggested model of the hydrogen effect on cohesion, although calibrated in accordance with the fast-separation limit (small cohesion reduction) of the Hirth-Rice-Wang theory, does allow for internal material failure with a clear and substantial effect on the external macroscopic loads.",
author = "Y. Liang and Sofronis, {Petros Athanasios}",
year = "2003",
month = "8",
day = "1",
doi = "10.1016/S0022-5096(03)00052-8",
language = "English",
volume = "51",
pages = "1509--1531",
journal = "Journal of the Mechanics and Physics of Solids",
issn = "0022-5096",
publisher = "Elsevier Limited",
number = "8",

}

TY - JOUR

T1 - Toward a phenomenological description of hydrogen-induced decohesion at particle/matrix interfaces

AU - Liang, Y.

AU - Sofronis, Petros Athanasios

PY - 2003/8/1

Y1 - 2003/8/1

N2 - A phenomenological traction-separation law that describes the cohesion of an inclusion/matrix interface in the presence of hydrogen is suggested such that the associated reversible work of separation during fast decohesion is exactly equal to that predicted by the thermodynamic theory of Hirth and Rice (Metall. Trans. 11A (1980) 1501) and Rice and Wang (Mater. Sci. Eng. A 107 (1989) 23) in the corresponding limit. The law is used to study interfacial debonding around an elastic inclusion imbedded in an elastoplastically deforming matrix while transient hydrogen transport takes place in the matrix, the inclusion, and the opening interfacial channel. Interfacial separation is modeled through cohesive elements and is simulated incrementally within the updated Lagrangian formulation scheme used to model bulk material elastoplasticity. For material data pertaining to nickel-base alloy 690, the numerical results indicate that both hydrogen-induced reduction of interfacial cohesion and matrix-softening lead to a reduction of stress at which void nucleation commences relatively to case of a hydrogen-free material. On the other hand, there is a competitive effect on the void nucleation strain: while cohesion reduction decreases this strain, matrix softening increases it, and its final value depends on the outcome of this competition. Thus the suggested model of the hydrogen effect on cohesion, although calibrated in accordance with the fast-separation limit (small cohesion reduction) of the Hirth-Rice-Wang theory, does allow for internal material failure with a clear and substantial effect on the external macroscopic loads.

AB - A phenomenological traction-separation law that describes the cohesion of an inclusion/matrix interface in the presence of hydrogen is suggested such that the associated reversible work of separation during fast decohesion is exactly equal to that predicted by the thermodynamic theory of Hirth and Rice (Metall. Trans. 11A (1980) 1501) and Rice and Wang (Mater. Sci. Eng. A 107 (1989) 23) in the corresponding limit. The law is used to study interfacial debonding around an elastic inclusion imbedded in an elastoplastically deforming matrix while transient hydrogen transport takes place in the matrix, the inclusion, and the opening interfacial channel. Interfacial separation is modeled through cohesive elements and is simulated incrementally within the updated Lagrangian formulation scheme used to model bulk material elastoplasticity. For material data pertaining to nickel-base alloy 690, the numerical results indicate that both hydrogen-induced reduction of interfacial cohesion and matrix-softening lead to a reduction of stress at which void nucleation commences relatively to case of a hydrogen-free material. On the other hand, there is a competitive effect on the void nucleation strain: while cohesion reduction decreases this strain, matrix softening increases it, and its final value depends on the outcome of this competition. Thus the suggested model of the hydrogen effect on cohesion, although calibrated in accordance with the fast-separation limit (small cohesion reduction) of the Hirth-Rice-Wang theory, does allow for internal material failure with a clear and substantial effect on the external macroscopic loads.

UR - http://www.scopus.com/inward/record.url?scp=0038407760&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0038407760&partnerID=8YFLogxK

U2 - 10.1016/S0022-5096(03)00052-8

DO - 10.1016/S0022-5096(03)00052-8

M3 - Article

AN - SCOPUS:0038407760

VL - 51

SP - 1509

EP - 1531

JO - Journal of the Mechanics and Physics of Solids

JF - Journal of the Mechanics and Physics of Solids

SN - 0022-5096

IS - 8

ER -