Toward Computational Screening of Bimetallic Alloys for Methane Activation: A Case Study of MgPt Alloy

Masataka Yoshida, Yuta Tsuji, Shoji Iguchi, Hikari Nishiguchi, Ichiro Yamanaka, Hideki Abe, Takashi Kamachi, Kazunari Yoshizawa

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)


CH4 is the main component of natural gas; there is a need for heterogeneous catalysts that can directly convert it into useful substances. On active metal surfaces, e.g., Pt surfaces, CH4 is sequentially dehydrogenated to CH or C. It is very difficult to obtain useful C2 products from them. We here present a catalytic informatics strategy with DFT calculations and databases to discover bimetallic alloy catalysts for selective methane coupling, which cannot be achieved with monometal catalysts. Considering two properties required for a methane conversion catalyst, i.e., reactivity and selectivity, alloy surfaces that allow the initial C-H bond cleavage reaction of methane to proceed and that stabilize CH2 and CH3 species more than CH and C species will be suitable catalysts for direct methane conversion. An exhaustive screening of alloys satisfying such conditions is carried out using density functional theory calculations. As a result, MgPt is predicted to be one of the most useful catalysts; on its surface, the activity of Pt is moderately suppressed due to Mg, and CH3 and CH2 species get more stable than CH and C species. The calculations predict that the C-C coupling reaction with the lowest activation barrier on the MgPt surface occurs for the pair of CH3 and CH2, producing the C2H5 adsorbed species; it becomes ethane if hydrogenated and ethylene if dehydrogenated. In addition, the optimal Mg/Pt ratio for the reaction is computationally explored, and it is found that the Mg/Pt ratio of 1:1 is the best. Eventually, experimental verification is carried out by actually synthesizing an alloy satisfying this ratio; the nonoxidative coupling reaction of methane molecules is tested in the presence of the MgPt catalyst, and the formation of C2 hydrocarbons as primary products is confirmed.

Original languageEnglish
Pages (from-to)9458-9472
Number of pages15
JournalACS Catalysis
Issue number15
Publication statusPublished - Aug 5 2022

All Science Journal Classification (ASJC) codes

  • Catalysis
  • Chemistry(all)


Dive into the research topics of 'Toward Computational Screening of Bimetallic Alloys for Methane Activation: A Case Study of MgPt Alloy'. Together they form a unique fingerprint.

Cite this