Transcutaneous codelivery of tumor antigen and resiquimod in solid-in-oil nanodispersions promotes antitumor immunity

Rie Wakabayashi, Hidetoshi Kono, Shuto Kozaka, Yoshiro Tahara, Noriho Kamiya, Masahiro Goto

Research output: Contribution to journalArticle

Abstract

Cancer vaccines aim to prevent or inhibit tumor growth by inducing an immune response to tumor-associated antigens (TAAs) encoded by or present in the vaccine. Previous work has demonstrated that effective antitumor immunity can be induced using a codelivery system in which nonspecific immunostimulatory molecules are administered together with TAAs. In this study, we investigated the antitumor effects of a solid-in-oil (S/O) nanodispersion system containing a model TAA, ovalbumin (OVA), and resiquimod (R-848), a small molecular Toll-like receptor 7/8 ligand, which induces an antigen-nonspecific cellular immune response that is crucial for the efficacy of cancer vaccines. R-848 was contained in the outer oil phase of S/O nanodispersion. Analysis of OVA and R-848 permeation in mouse skin after application of an R-848 S/O nanodispersion indicated that R-848 rapidly permeated the skin and preactivated Langerhans cells, resulting in efficient uptake of OVA and migration of antigen-loaded Langerhans cells to the draining lymph nodes. Transcutaneous immunization of mice with an R-848 S/O nanodispersion inhibited the growth of E.G7-OVA tumors and prolonged mouse survival to a greater extent than did immunization with an S/O nanodispersion containing OVA alone. Consistent with this observation, antigen-specific secretion of the Th1 cytokine interferon-γand cytolytic activity were both high in splenocytes isolated from mice immunized with R-848 S/O. Our results thus demonstrate that codelivery of R-848 significantly amplified the antitumor immune response induced by antigen-containing S/O nanodispersions and further suggest that S/O nanodispersions may be effective formulations for codelivery of TAAs and R-848 in transcutaneous cancer vaccines.

Original languageEnglish
JournalACS Biomaterials Science and Engineering
DOIs
Publication statusPublished - Jan 1 2019

Fingerprint

resiquimod
Neoplasm Antigens
Antigens
Tumors
Oils
Ovalbumin
Vaccines
Cancer Vaccines
Immunization
Skin
Toll-Like Receptor 7
Interferons
Permeation
Ligands
Cytokines

All Science Journal Classification (ASJC) codes

  • Biomaterials
  • Biomedical Engineering

Cite this

@article{ea691fe125f7412e9a6e6a5962cfc91c,
title = "Transcutaneous codelivery of tumor antigen and resiquimod in solid-in-oil nanodispersions promotes antitumor immunity",
abstract = "Cancer vaccines aim to prevent or inhibit tumor growth by inducing an immune response to tumor-associated antigens (TAAs) encoded by or present in the vaccine. Previous work has demonstrated that effective antitumor immunity can be induced using a codelivery system in which nonspecific immunostimulatory molecules are administered together with TAAs. In this study, we investigated the antitumor effects of a solid-in-oil (S/O) nanodispersion system containing a model TAA, ovalbumin (OVA), and resiquimod (R-848), a small molecular Toll-like receptor 7/8 ligand, which induces an antigen-nonspecific cellular immune response that is crucial for the efficacy of cancer vaccines. R-848 was contained in the outer oil phase of S/O nanodispersion. Analysis of OVA and R-848 permeation in mouse skin after application of an R-848 S/O nanodispersion indicated that R-848 rapidly permeated the skin and preactivated Langerhans cells, resulting in efficient uptake of OVA and migration of antigen-loaded Langerhans cells to the draining lymph nodes. Transcutaneous immunization of mice with an R-848 S/O nanodispersion inhibited the growth of E.G7-OVA tumors and prolonged mouse survival to a greater extent than did immunization with an S/O nanodispersion containing OVA alone. Consistent with this observation, antigen-specific secretion of the Th1 cytokine interferon-γand cytolytic activity were both high in splenocytes isolated from mice immunized with R-848 S/O. Our results thus demonstrate that codelivery of R-848 significantly amplified the antitumor immune response induced by antigen-containing S/O nanodispersions and further suggest that S/O nanodispersions may be effective formulations for codelivery of TAAs and R-848 in transcutaneous cancer vaccines.",
author = "Rie Wakabayashi and Hidetoshi Kono and Shuto Kozaka and Yoshiro Tahara and Noriho Kamiya and Masahiro Goto",
year = "2019",
month = "1",
day = "1",
doi = "10.1021/acsbiomaterials.9b00260",
language = "English",
journal = "ACS Biomaterials Science and Engineering",
issn = "2373-9878",
publisher = "American Chemical Society",

}

TY - JOUR

T1 - Transcutaneous codelivery of tumor antigen and resiquimod in solid-in-oil nanodispersions promotes antitumor immunity

AU - Wakabayashi, Rie

AU - Kono, Hidetoshi

AU - Kozaka, Shuto

AU - Tahara, Yoshiro

AU - Kamiya, Noriho

AU - Goto, Masahiro

PY - 2019/1/1

Y1 - 2019/1/1

N2 - Cancer vaccines aim to prevent or inhibit tumor growth by inducing an immune response to tumor-associated antigens (TAAs) encoded by or present in the vaccine. Previous work has demonstrated that effective antitumor immunity can be induced using a codelivery system in which nonspecific immunostimulatory molecules are administered together with TAAs. In this study, we investigated the antitumor effects of a solid-in-oil (S/O) nanodispersion system containing a model TAA, ovalbumin (OVA), and resiquimod (R-848), a small molecular Toll-like receptor 7/8 ligand, which induces an antigen-nonspecific cellular immune response that is crucial for the efficacy of cancer vaccines. R-848 was contained in the outer oil phase of S/O nanodispersion. Analysis of OVA and R-848 permeation in mouse skin after application of an R-848 S/O nanodispersion indicated that R-848 rapidly permeated the skin and preactivated Langerhans cells, resulting in efficient uptake of OVA and migration of antigen-loaded Langerhans cells to the draining lymph nodes. Transcutaneous immunization of mice with an R-848 S/O nanodispersion inhibited the growth of E.G7-OVA tumors and prolonged mouse survival to a greater extent than did immunization with an S/O nanodispersion containing OVA alone. Consistent with this observation, antigen-specific secretion of the Th1 cytokine interferon-γand cytolytic activity were both high in splenocytes isolated from mice immunized with R-848 S/O. Our results thus demonstrate that codelivery of R-848 significantly amplified the antitumor immune response induced by antigen-containing S/O nanodispersions and further suggest that S/O nanodispersions may be effective formulations for codelivery of TAAs and R-848 in transcutaneous cancer vaccines.

AB - Cancer vaccines aim to prevent or inhibit tumor growth by inducing an immune response to tumor-associated antigens (TAAs) encoded by or present in the vaccine. Previous work has demonstrated that effective antitumor immunity can be induced using a codelivery system in which nonspecific immunostimulatory molecules are administered together with TAAs. In this study, we investigated the antitumor effects of a solid-in-oil (S/O) nanodispersion system containing a model TAA, ovalbumin (OVA), and resiquimod (R-848), a small molecular Toll-like receptor 7/8 ligand, which induces an antigen-nonspecific cellular immune response that is crucial for the efficacy of cancer vaccines. R-848 was contained in the outer oil phase of S/O nanodispersion. Analysis of OVA and R-848 permeation in mouse skin after application of an R-848 S/O nanodispersion indicated that R-848 rapidly permeated the skin and preactivated Langerhans cells, resulting in efficient uptake of OVA and migration of antigen-loaded Langerhans cells to the draining lymph nodes. Transcutaneous immunization of mice with an R-848 S/O nanodispersion inhibited the growth of E.G7-OVA tumors and prolonged mouse survival to a greater extent than did immunization with an S/O nanodispersion containing OVA alone. Consistent with this observation, antigen-specific secretion of the Th1 cytokine interferon-γand cytolytic activity were both high in splenocytes isolated from mice immunized with R-848 S/O. Our results thus demonstrate that codelivery of R-848 significantly amplified the antitumor immune response induced by antigen-containing S/O nanodispersions and further suggest that S/O nanodispersions may be effective formulations for codelivery of TAAs and R-848 in transcutaneous cancer vaccines.

UR - http://www.scopus.com/inward/record.url?scp=85065543280&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85065543280&partnerID=8YFLogxK

U2 - 10.1021/acsbiomaterials.9b00260

DO - 10.1021/acsbiomaterials.9b00260

M3 - Article

AN - SCOPUS:85065543280

JO - ACS Biomaterials Science and Engineering

JF - ACS Biomaterials Science and Engineering

SN - 2373-9878

ER -