Transient motion control of an underwater glider based on numerical analysis

Satoru Yamaguchi, Yutaro Miyai

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The authors have been developing an autonomous underwater glider which equips an OBEM (Ocean Bottom Electro-Magnetometer). That is a hopeful instrument for the ocean floor resources explorations. The autonomous vehicle has an ability to achieve a continuous resource exploration autonomously for a long term. The motion control system for landing of the vehicle was investigated in the previous studies. In these reports, hydrodynamic performance of the vehicle in landing is examined by CFD calculations. The bottom effect which affects the lift and drag of the wings of the glider is studied and the characteristics of the blended wing body near a sea bottom is discussed. On the other hand, the transient motions of the vehicle such as a deployment, the motion when the vehicle changes its buoyancy for cruise are also important problems for the motion control of the vehicle. The control system might be affected by the unpredicted change of the hydrodynamic forces acting on the body and the wing in the transient conditions. Consequently, it may cause deterioration of the performance of the control system. In this report, these transient motions are investigated based on CFD analysis. The overset mesh approach is used to simulated the sequential maneuvers in the cruising of the underwater vehicle.

Original languageEnglish
Title of host publicationProceedings of the 31st International Ocean and Polar Engineering Conference, ISOPE 2021
PublisherInternational Society of Offshore and Polar Engineers
Pages283-288
Number of pages6
ISBN (Print)9781880653821
Publication statusPublished - 2021
Event31st International Ocean and Polar Engineering Conference, ISOPE 2021 - Virtual, Online
Duration: Jun 20 2021Jun 25 2021

Publication series

NameProceedings of the International Offshore and Polar Engineering Conference
ISSN (Print)1098-6189
ISSN (Electronic)1555-1792

Conference

Conference31st International Ocean and Polar Engineering Conference, ISOPE 2021
CityVirtual, Online
Period6/20/216/25/21

All Science Journal Classification (ASJC) codes

  • Energy Engineering and Power Technology
  • Ocean Engineering
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Transient motion control of an underwater glider based on numerical analysis'. Together they form a unique fingerprint.

Cite this