Transient neuronal coactivations embedded in globally propagating waves underlie resting-state functional connectivity

Teppei Matsui, Tomonari Murakami, Kenichi Oki

Research output: Contribution to journalArticle

56 Citations (Scopus)

Abstract

Resting-state functional connectivity (FC), which measures the correlation of spontaneous hemodynamic signals (HemoS) between brain areas, is widely used to study brain networks noninvasively. It is commonly assumed that spatial patterns of HemoSbased FC (Hemo-FC) reflect large-scale dynamics of underlying neuronal activity. To date, studies of spontaneous neuronal activity cataloged heterogeneous types of events ranging from waves of activity spanning the entire neocortex to flash-like activations of a set of anatomically connected cortical areas. However, it remains unclear how these various types of large-scale dynamics are interrelated. More importantly, whether each type of large-scale dynamics contributes to Hemo-FC has not been explored. Here, we addressed these questions by simultaneously monitoring neuronal calcium signals (CaS) and HemoS in the entire neocortex of mice at high spatiotemporal resolution. We found a significant relationship between two seemingly different types of large-scale spontaneous neuronal activity - namely, global waves propagating across the neocortex and transient coactivations among cortical areas sharing high FC. Different sets of cortical areas, sharing high FC within each set, were coactivated at different timings of the propagating global waves, suggesting that spatial information of cortical network characterized by FC was embedded in the phase of the global waves. Furthermore, we confirmed that such transient coactivations in CaS were indeed converted into spatially similar coactivations in HemoS and were necessary to sustain the spatial structure of Hemo-FC. These results explain how global waves of spontaneous neuronal activity propagating across large-scale cortical network contribute to Hemo-FC in the resting state.

Original languageEnglish
Pages (from-to)6556-6561
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Volume113
Issue number23
DOIs
Publication statusPublished - Jun 7 2016

Fingerprint

Neocortex
Hemodynamics
Calcium
Information Services
Brain

All Science Journal Classification (ASJC) codes

  • General

Cite this

Transient neuronal coactivations embedded in globally propagating waves underlie resting-state functional connectivity. / Matsui, Teppei; Murakami, Tomonari; Oki, Kenichi.

In: Proceedings of the National Academy of Sciences of the United States of America, Vol. 113, No. 23, 07.06.2016, p. 6556-6561.

Research output: Contribution to journalArticle

@article{6491eb1a185a4c978980594f9facb2d3,
title = "Transient neuronal coactivations embedded in globally propagating waves underlie resting-state functional connectivity",
abstract = "Resting-state functional connectivity (FC), which measures the correlation of spontaneous hemodynamic signals (HemoS) between brain areas, is widely used to study brain networks noninvasively. It is commonly assumed that spatial patterns of HemoSbased FC (Hemo-FC) reflect large-scale dynamics of underlying neuronal activity. To date, studies of spontaneous neuronal activity cataloged heterogeneous types of events ranging from waves of activity spanning the entire neocortex to flash-like activations of a set of anatomically connected cortical areas. However, it remains unclear how these various types of large-scale dynamics are interrelated. More importantly, whether each type of large-scale dynamics contributes to Hemo-FC has not been explored. Here, we addressed these questions by simultaneously monitoring neuronal calcium signals (CaS) and HemoS in the entire neocortex of mice at high spatiotemporal resolution. We found a significant relationship between two seemingly different types of large-scale spontaneous neuronal activity - namely, global waves propagating across the neocortex and transient coactivations among cortical areas sharing high FC. Different sets of cortical areas, sharing high FC within each set, were coactivated at different timings of the propagating global waves, suggesting that spatial information of cortical network characterized by FC was embedded in the phase of the global waves. Furthermore, we confirmed that such transient coactivations in CaS were indeed converted into spatially similar coactivations in HemoS and were necessary to sustain the spatial structure of Hemo-FC. These results explain how global waves of spontaneous neuronal activity propagating across large-scale cortical network contribute to Hemo-FC in the resting state.",
author = "Teppei Matsui and Tomonari Murakami and Kenichi Oki",
year = "2016",
month = "6",
day = "7",
doi = "10.1073/pnas.1521299113",
language = "English",
volume = "113",
pages = "6556--6561",
journal = "Proceedings of the National Academy of Sciences of the United States of America",
issn = "0027-8424",
number = "23",

}

TY - JOUR

T1 - Transient neuronal coactivations embedded in globally propagating waves underlie resting-state functional connectivity

AU - Matsui, Teppei

AU - Murakami, Tomonari

AU - Oki, Kenichi

PY - 2016/6/7

Y1 - 2016/6/7

N2 - Resting-state functional connectivity (FC), which measures the correlation of spontaneous hemodynamic signals (HemoS) between brain areas, is widely used to study brain networks noninvasively. It is commonly assumed that spatial patterns of HemoSbased FC (Hemo-FC) reflect large-scale dynamics of underlying neuronal activity. To date, studies of spontaneous neuronal activity cataloged heterogeneous types of events ranging from waves of activity spanning the entire neocortex to flash-like activations of a set of anatomically connected cortical areas. However, it remains unclear how these various types of large-scale dynamics are interrelated. More importantly, whether each type of large-scale dynamics contributes to Hemo-FC has not been explored. Here, we addressed these questions by simultaneously monitoring neuronal calcium signals (CaS) and HemoS in the entire neocortex of mice at high spatiotemporal resolution. We found a significant relationship between two seemingly different types of large-scale spontaneous neuronal activity - namely, global waves propagating across the neocortex and transient coactivations among cortical areas sharing high FC. Different sets of cortical areas, sharing high FC within each set, were coactivated at different timings of the propagating global waves, suggesting that spatial information of cortical network characterized by FC was embedded in the phase of the global waves. Furthermore, we confirmed that such transient coactivations in CaS were indeed converted into spatially similar coactivations in HemoS and were necessary to sustain the spatial structure of Hemo-FC. These results explain how global waves of spontaneous neuronal activity propagating across large-scale cortical network contribute to Hemo-FC in the resting state.

AB - Resting-state functional connectivity (FC), which measures the correlation of spontaneous hemodynamic signals (HemoS) between brain areas, is widely used to study brain networks noninvasively. It is commonly assumed that spatial patterns of HemoSbased FC (Hemo-FC) reflect large-scale dynamics of underlying neuronal activity. To date, studies of spontaneous neuronal activity cataloged heterogeneous types of events ranging from waves of activity spanning the entire neocortex to flash-like activations of a set of anatomically connected cortical areas. However, it remains unclear how these various types of large-scale dynamics are interrelated. More importantly, whether each type of large-scale dynamics contributes to Hemo-FC has not been explored. Here, we addressed these questions by simultaneously monitoring neuronal calcium signals (CaS) and HemoS in the entire neocortex of mice at high spatiotemporal resolution. We found a significant relationship between two seemingly different types of large-scale spontaneous neuronal activity - namely, global waves propagating across the neocortex and transient coactivations among cortical areas sharing high FC. Different sets of cortical areas, sharing high FC within each set, were coactivated at different timings of the propagating global waves, suggesting that spatial information of cortical network characterized by FC was embedded in the phase of the global waves. Furthermore, we confirmed that such transient coactivations in CaS were indeed converted into spatially similar coactivations in HemoS and were necessary to sustain the spatial structure of Hemo-FC. These results explain how global waves of spontaneous neuronal activity propagating across large-scale cortical network contribute to Hemo-FC in the resting state.

UR - http://www.scopus.com/inward/record.url?scp=84973352473&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84973352473&partnerID=8YFLogxK

U2 - 10.1073/pnas.1521299113

DO - 10.1073/pnas.1521299113

M3 - Article

C2 - 27185944

AN - SCOPUS:84973352473

VL - 113

SP - 6556

EP - 6561

JO - Proceedings of the National Academy of Sciences of the United States of America

JF - Proceedings of the National Academy of Sciences of the United States of America

SN - 0027-8424

IS - 23

ER -