Abstract
The advanced metal organic deposition using trifluoroacetates (TFA-MOD) is one of the most promising methods for producing superconducting coated conductors. In order to form highly grain aligned YBa2Cu3O7-δ (Y123) films with high JC, it is important to control the microstructures of the films. In the present work, Y123 films were grown by the advanced TFA-MOD method on CeO2 layered LaAlO3 (LAO) substrates. Quenched films were prepared by cooling rapidly during the crystallization stage, and their cross-sectional microstructures were investigated by transmission electron microscopy (TEM). The bright-field images (BFIs) showed existence of some grains, precipitates and their interfaces in the film. Selected area electron diffraction patterns (SAEDPs) were taken from various regions, and a-axis and/or c-axis-oriented structures, amorphous structures, etc. were observed. In addition, Y123 grains, BaF2, CuO and Y2Cu2O5 grains were clarified by the scanning transmission electron microscopy-energy dispersive X-ray spectroscopy (STEM-EDS) analyses.
Original language | English |
---|---|
Pages (from-to) | 717-721 |
Number of pages | 5 |
Journal | Physica C: Superconductivity and its applications |
Volume | 463-465 |
Issue number | SUPPL. |
DOIs | |
Publication status | Published - Oct 1 2007 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics
- Energy Engineering and Power Technology
- Electrical and Electronic Engineering