Triassic mid-oceanic sedimentation in Panthalassa Ocean: Sambosan accretionary complex, Japan

Tetsuji Onoue, Hiroyoshi Sano

Research output: Contribution to journalArticle

20 Citations (Scopus)

Abstract

The Sambosan accretionary complex of southwest Japan was formed during the uppermost Jurassic to lowermost Cretaceous and consists of basaltic rocks, carbonates and siliceous rocks. The Sambosan oceanic rocks were grouped into four stratigraphic successions: (i) Middle Upper Triassic basaltic rock; (ii) Upper Triassic shallow-water limestone; (iii) limestone breccia; and (iv) Middle Middle Triassic to lower Upper Jurassic siliceous rock successions. The basaltic rocks have a geochemical affinity with oceanic island basalt of a normal hotspot origin. The shallow-water limestone, limestone breccia, and siliceous rock successions are interpreted to be sediments on the seamount-top, upper seamount-flank and surrounding ocean floor, respectively. Deposition of the radiolarian chert of the siliceous rock succession took place on the ocean floor in Late Anisian and continued until Middle Jurassic. Oceanic island basalt was erupted to form a seamount by an intraplate volcanism in Late Carnian. Late Triassic shallow-water carbonate sedimentation occurred at the top of this seamount. Accumulation of the radiolarian chert was temporally replaced by Late Carnian to Early Norian deep-water pelagic carbonate sedimentation. Biotic association and lithologic properties of the pelagic carbonates suggest that an enormous production and accumulation of calcareous planktonic biotas occurred in an open-ocean realm of the Panthalassa Ocean in Late Carnian through Early Norian. Upper Norian ribbon chert of the siliceous rock succession contains thin beds of limestone breccia displaced from the shallow-water buildup resting upon the seamount. The shallow-water limestone and siliceous rock successions are nearly coeval with one another and are laterally linked by displaced carbonates in the siliceous rock succession.

Original languageEnglish
Pages (from-to)173-190
Number of pages18
JournalIsland Arc
Volume16
Issue number1
DOIs
Publication statusPublished - Mar 1 2007

Fingerprint

Triassic
sedimentation
ocean
seamount
rock
limestone
shallow water
Norian
Carnian
chert
breccia
carbonate
Jurassic
seafloor
basalt
Anisian
open ocean
carbonate rock
biota
hot spot

All Science Journal Classification (ASJC) codes

  • Geology

Cite this

Triassic mid-oceanic sedimentation in Panthalassa Ocean : Sambosan accretionary complex, Japan. / Onoue, Tetsuji; Sano, Hiroyoshi.

In: Island Arc, Vol. 16, No. 1, 01.03.2007, p. 173-190.

Research output: Contribution to journalArticle

@article{6c9d15e547bb497f9900a884f312516c,
title = "Triassic mid-oceanic sedimentation in Panthalassa Ocean: Sambosan accretionary complex, Japan",
abstract = "The Sambosan accretionary complex of southwest Japan was formed during the uppermost Jurassic to lowermost Cretaceous and consists of basaltic rocks, carbonates and siliceous rocks. The Sambosan oceanic rocks were grouped into four stratigraphic successions: (i) Middle Upper Triassic basaltic rock; (ii) Upper Triassic shallow-water limestone; (iii) limestone breccia; and (iv) Middle Middle Triassic to lower Upper Jurassic siliceous rock successions. The basaltic rocks have a geochemical affinity with oceanic island basalt of a normal hotspot origin. The shallow-water limestone, limestone breccia, and siliceous rock successions are interpreted to be sediments on the seamount-top, upper seamount-flank and surrounding ocean floor, respectively. Deposition of the radiolarian chert of the siliceous rock succession took place on the ocean floor in Late Anisian and continued until Middle Jurassic. Oceanic island basalt was erupted to form a seamount by an intraplate volcanism in Late Carnian. Late Triassic shallow-water carbonate sedimentation occurred at the top of this seamount. Accumulation of the radiolarian chert was temporally replaced by Late Carnian to Early Norian deep-water pelagic carbonate sedimentation. Biotic association and lithologic properties of the pelagic carbonates suggest that an enormous production and accumulation of calcareous planktonic biotas occurred in an open-ocean realm of the Panthalassa Ocean in Late Carnian through Early Norian. Upper Norian ribbon chert of the siliceous rock succession contains thin beds of limestone breccia displaced from the shallow-water buildup resting upon the seamount. The shallow-water limestone and siliceous rock successions are nearly coeval with one another and are laterally linked by displaced carbonates in the siliceous rock succession.",
author = "Tetsuji Onoue and Hiroyoshi Sano",
year = "2007",
month = "3",
day = "1",
doi = "10.1111/j.1440-1738.2007.00565.x",
language = "English",
volume = "16",
pages = "173--190",
journal = "Island Arc",
issn = "1038-4871",
publisher = "Wiley-Blackwell",
number = "1",

}

TY - JOUR

T1 - Triassic mid-oceanic sedimentation in Panthalassa Ocean

T2 - Sambosan accretionary complex, Japan

AU - Onoue, Tetsuji

AU - Sano, Hiroyoshi

PY - 2007/3/1

Y1 - 2007/3/1

N2 - The Sambosan accretionary complex of southwest Japan was formed during the uppermost Jurassic to lowermost Cretaceous and consists of basaltic rocks, carbonates and siliceous rocks. The Sambosan oceanic rocks were grouped into four stratigraphic successions: (i) Middle Upper Triassic basaltic rock; (ii) Upper Triassic shallow-water limestone; (iii) limestone breccia; and (iv) Middle Middle Triassic to lower Upper Jurassic siliceous rock successions. The basaltic rocks have a geochemical affinity with oceanic island basalt of a normal hotspot origin. The shallow-water limestone, limestone breccia, and siliceous rock successions are interpreted to be sediments on the seamount-top, upper seamount-flank and surrounding ocean floor, respectively. Deposition of the radiolarian chert of the siliceous rock succession took place on the ocean floor in Late Anisian and continued until Middle Jurassic. Oceanic island basalt was erupted to form a seamount by an intraplate volcanism in Late Carnian. Late Triassic shallow-water carbonate sedimentation occurred at the top of this seamount. Accumulation of the radiolarian chert was temporally replaced by Late Carnian to Early Norian deep-water pelagic carbonate sedimentation. Biotic association and lithologic properties of the pelagic carbonates suggest that an enormous production and accumulation of calcareous planktonic biotas occurred in an open-ocean realm of the Panthalassa Ocean in Late Carnian through Early Norian. Upper Norian ribbon chert of the siliceous rock succession contains thin beds of limestone breccia displaced from the shallow-water buildup resting upon the seamount. The shallow-water limestone and siliceous rock successions are nearly coeval with one another and are laterally linked by displaced carbonates in the siliceous rock succession.

AB - The Sambosan accretionary complex of southwest Japan was formed during the uppermost Jurassic to lowermost Cretaceous and consists of basaltic rocks, carbonates and siliceous rocks. The Sambosan oceanic rocks were grouped into four stratigraphic successions: (i) Middle Upper Triassic basaltic rock; (ii) Upper Triassic shallow-water limestone; (iii) limestone breccia; and (iv) Middle Middle Triassic to lower Upper Jurassic siliceous rock successions. The basaltic rocks have a geochemical affinity with oceanic island basalt of a normal hotspot origin. The shallow-water limestone, limestone breccia, and siliceous rock successions are interpreted to be sediments on the seamount-top, upper seamount-flank and surrounding ocean floor, respectively. Deposition of the radiolarian chert of the siliceous rock succession took place on the ocean floor in Late Anisian and continued until Middle Jurassic. Oceanic island basalt was erupted to form a seamount by an intraplate volcanism in Late Carnian. Late Triassic shallow-water carbonate sedimentation occurred at the top of this seamount. Accumulation of the radiolarian chert was temporally replaced by Late Carnian to Early Norian deep-water pelagic carbonate sedimentation. Biotic association and lithologic properties of the pelagic carbonates suggest that an enormous production and accumulation of calcareous planktonic biotas occurred in an open-ocean realm of the Panthalassa Ocean in Late Carnian through Early Norian. Upper Norian ribbon chert of the siliceous rock succession contains thin beds of limestone breccia displaced from the shallow-water buildup resting upon the seamount. The shallow-water limestone and siliceous rock successions are nearly coeval with one another and are laterally linked by displaced carbonates in the siliceous rock succession.

UR - http://www.scopus.com/inward/record.url?scp=33847021866&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33847021866&partnerID=8YFLogxK

U2 - 10.1111/j.1440-1738.2007.00565.x

DO - 10.1111/j.1440-1738.2007.00565.x

M3 - Article

AN - SCOPUS:33847021866

VL - 16

SP - 173

EP - 190

JO - Island Arc

JF - Island Arc

SN - 1038-4871

IS - 1

ER -