TRPC3 positively regulates reactive oxygen species driving maladaptive cardiac remodeling

Naoyuki Kitajima, Takuro Numaga-Tomita, Masahiko Watanabe, Takuya Kuroda, Akiyuki Nishimura, Kei Miyano, Satoshi Yasuda, Koichiro Kuwahara, Yoji Sato, Tomomi Ide, Lutz Birnbaumer, Hideki Sumimoto, Yasuo Mori, Motohiro Nishida

Research output: Contribution to journalArticlepeer-review

41 Citations (Scopus)

Abstract

Reactive oxygen species (ROS) produced by NADPH oxidase 2 (Nox2) function as key mediators of mechanotransduction during both physiological adaptation to mechanical load and maladaptive remodeling of the heart. This is despite low levels of cardiac Nox2 expression. The mechanism underlying the transition from adaptation to maladaptation remains obscure, however. We demonstrate that transient receptor potential canonical 3 (TRPC3), a Ca 2+-permeable channel, acts as a positive regulator of ROS (PRROS) in cardiomyocytes, and specifically regulates pressure overload-induced maladaptive cardiac remodeling in mice. TRPC3 physically interacts with Nox2 at specific C-terminal sites, thereby protecting Nox2 from proteasome-dependent degradation and amplifying Ca 2+-dependent Nox2 activation through TRPC3-mediated background Ca 2+ entry. Nox2 also stabilizes TRPC3 proteins to enhance TRPC3 channel activity. Expression of TRPC3 C-terminal polypeptide abolished TRPC3-regulated ROS production by disrupting TRPC3-Nox2 interaction, without affecting TRPC3-mediated Ca 2+ influx. The novel TRPC3 function as a PRROS provides a mechanistic explanation for how diastolic Ca 2+ influx specifically encodes signals to induce ROS-mediated maladaptive remodeling and offers new therapeutic possibilities.

Original languageEnglish
Article number37001
JournalScientific reports
Volume6
DOIs
Publication statusPublished - Nov 11 2016
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • General

Fingerprint Dive into the research topics of 'TRPC3 positively regulates reactive oxygen species driving maladaptive cardiac remodeling'. Together they form a unique fingerprint.

Cite this