Tuning intercellular cohesion with membrane-anchored oligonucleotides

Ian T. Hoffecker, Yusuke Arima, Hiroo Iwata

Research output: Contribution to journalArticlepeer-review


Cohesive interactions between cells play an integral role in development, differentiation, and regeneration. Existing methods for controlling cell-cell cohesion by manipulating protein expression are constrained by biological interdependencies, e.g. coupling of cadherins to actomyosin force-feedback mechanisms. We use oligonucleotides conjugated to PEGylated lipid anchors (ssDNAPEGDPPE) to introduce artificial cell-cell cohesion that is largely decoupled from the internal cytoskeleton. We describe cell-cell doublets with a mechanical model based on isotropic, elastic deformation of spheres to estimate the cohesion at the cell-cell interface. Physical manipulation of cohesion by modulating PEG-lipid to ssDNAPEGDPPE ratio, and conversely treatment with actin-depolymerizing cytochalsin-D, resulted respectively in decreases and increases in doublet contact area. Our data are relevant to the ongoing discussion over mechanisms of tissue surface tension and in agreement with models based on opposing cortical and cohesive forces. PEG-lipid modulation of doublet geometries resulted in a well-defined curve indicating continuity, enabling prescriptive calibration for controlling doublet geometry. Our study demonstrates tuning of basic doublet cohesion, laying the foundation for more complex multicellular cohesion control independent of protein expression.

Original languageEnglish
JournalUnknown Journal
Publication statusPublished - Apr 27 2019

All Science Journal Classification (ASJC) codes

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • Immunology and Microbiology(all)
  • Neuroscience(all)
  • Pharmacology, Toxicology and Pharmaceutics(all)

Fingerprint Dive into the research topics of 'Tuning intercellular cohesion with membrane-anchored oligonucleotides'. Together they form a unique fingerprint.

Cite this