Abstract
Fluorescence sensing with small molecular chemosensors is a versatile technique for elucidation of function of various biological substances. We now report a new fluorescent chemosensor for nucleoside polyphosphates such as ATP using metal-anion coordination chemistry. The chemosensor 1-2Zn(II) is comprised of the two sites of 2,27prime;-dipicolylamine (Dpa)-Zn(II) as the binding motifs and xanthene as a fluorescent sensing unit for nucleoside polyphosphates. The chemosensor 1-2Zn(II) selectively senses nucleoside polyphosphates with a large fluorescence enhancement (F/Fo > 15) and strong binding affinity (Kapp ≈ 1 × 106 M-1), whereas no detectable fluorescence change was induced by monophosphate species and various other anions. The 'turn-on,' fluorescence of 1-2Zn(II) is based on a new mechanism, which involves the binding-induced recovery of the conjugated form of the xanthene ring from its nonfluorescent deconjugated state which was formed by an unprecedented nucleophilic attack of zinc-bound water. The selective and highly sensitive ability of 1-2Zn(II) to detect nucleoside polyphosphates enables its bioanalytical applications in fluorescence visualization of ATP particulate stores in living cells, demonstrating the potential utility of 1-2Zn(II).
Original language | English |
---|---|
Pages (from-to) | 12095-12101 |
Number of pages | 7 |
Journal | Journal of the American Chemical Society |
Volume | 130 |
Issue number | 36 |
DOIs | |
Publication status | Published - Sep 10 2008 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Catalysis
- Chemistry(all)
- Biochemistry
- Colloid and Surface Chemistry