Understanding adversarial robustness via critical attacking route

Tianlin Li, Aishan Liu, Xianglong Liu, Yitao Xu, Chongzhi Zhang, Xiaofei Xie

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Deep neural networks (DNNs) are vulnerable to adversarial examples which are generated by inputs with imperceptible perturbations. Understanding adversarial robustness of DNNs has become an important issue, which would for certain result in better practical deep learning applications. To address this issue, we try to explain adversarial robustness for deep models from a new perspective of critical attacking route, which is computed by a gradient-based influence propagation strategy. Similar to rumor spreading in social networks, we believe that adversarial noises are amplified and propagated through the critical attacking route. By exploiting neurons’ influences layer by layer, we compose the critical attacking route with neurons that make the highest contributions towards model decision. In this paper, we first draw the close connection between adversarial robustness and critical attacking route, as the route makes the most non-trivial contributions to model predictions in the adversarial setting. By constraining the propagation process and node behaviors on this route, we could weaken the noise propagation and improve model robustness. Also, we find that critical attacking neurons are useful to evaluate sample adversarial hardness that images with higher stimulus are easier to be perturbed into adversarial examples.

Original languageEnglish
Pages (from-to)568-578
Number of pages11
JournalInformation sciences
Volume547
DOIs
Publication statusPublished - Feb 8 2021
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Software
  • Control and Systems Engineering
  • Theoretical Computer Science
  • Computer Science Applications
  • Information Systems and Management
  • Artificial Intelligence

Fingerprint Dive into the research topics of 'Understanding adversarial robustness via critical attacking route'. Together they form a unique fingerprint.

Cite this