TY - JOUR
T1 - Understanding circadian regulation of carbohydrate metabolism in arabidopsis using mathematical models
AU - Webb, Alex A.R.
AU - Satake, Akiko
N1 - Publisher Copyright:
© The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.
PY - 2015/4
Y1 - 2015/4
N2 - C3 plants assimilate carbon by photosynthesis only during the day, but carbon resources are also required for growth and maintenance at night. To avoid carbon starvation, many plants store a part of photosynthetic carbon in starch during the day, and degrade it to supply sugars for growth at night. In Arabidopsis, starch accumulation in the day and degradation at night occur almost linearly, with the shape of this diel starch profile adaptively changing to allow continuous supply of sugar even in long-night conditions. The anticipation of dawn required to ensure linear consumption of starch to almost zero at dawn presumably requires the circadian clock. We review the links between carbon metabolism and the circadian clock, and mathematical models aimed at explaining the diel starch profile. These models can be considered in two classes, those that assume the level of available starch is sensed and the system ensures linearity of starch availability, and those in which sugar sensing is assumed, yielding linearity of starch availability as an emergent property of sucrose homeostasis. In the second class of model the feedback from starch metabolism to the circadian clock is considered to be essential for adaptive response to diverse photoperiods, consistent with recent empirical data demonstrating entrainment of the circadian clock by photosynthesis. Knowledge concerning the mechanisms regulating the dynamics of starch metabolism and sugar homeostasis in plants is required to develop new theories about the limitations of growth and biomass accumulation.
AB - C3 plants assimilate carbon by photosynthesis only during the day, but carbon resources are also required for growth and maintenance at night. To avoid carbon starvation, many plants store a part of photosynthetic carbon in starch during the day, and degrade it to supply sugars for growth at night. In Arabidopsis, starch accumulation in the day and degradation at night occur almost linearly, with the shape of this diel starch profile adaptively changing to allow continuous supply of sugar even in long-night conditions. The anticipation of dawn required to ensure linear consumption of starch to almost zero at dawn presumably requires the circadian clock. We review the links between carbon metabolism and the circadian clock, and mathematical models aimed at explaining the diel starch profile. These models can be considered in two classes, those that assume the level of available starch is sensed and the system ensures linearity of starch availability, and those in which sugar sensing is assumed, yielding linearity of starch availability as an emergent property of sucrose homeostasis. In the second class of model the feedback from starch metabolism to the circadian clock is considered to be essential for adaptive response to diverse photoperiods, consistent with recent empirical data demonstrating entrainment of the circadian clock by photosynthesis. Knowledge concerning the mechanisms regulating the dynamics of starch metabolism and sugar homeostasis in plants is required to develop new theories about the limitations of growth and biomass accumulation.
UR - http://www.scopus.com/inward/record.url?scp=84940642347&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84940642347&partnerID=8YFLogxK
U2 - 10.1093/pcp/pcv033
DO - 10.1093/pcp/pcv033
M3 - Article
C2 - 25745029
AN - SCOPUS:84940642347
SN - 0032-0781
VL - 56
SP - 586
EP - 593
JO - Plant and Cell Physiology
JF - Plant and Cell Physiology
IS - 4
ER -