Unsteady Navier-Stokes simulation of transonic cascade flow using an unfactored implicit upwind relaxation scheme with inner iterations

Masato Furukawa, T. Nakano, M. Inoue

Research output: Contribution to journalConference article


An implicit upwind scheme has been developed for Navier-Stokes simulations of unsteady flows in transonic cascades. The two-dimensional, Reynolds-averaged Navier-Stokes equations are discretized in space using a cell-centered finite volume formulation and in time using the Euler implicit method. The inviscid fluxes are evaluated using a highly accurate upwind scheme based on a TVD formulation with the Roe's approximate Riemann solver, and the viscous fluxes are determined in a central differencing manner. The algebraic turbulence model of Baldwin and Lomax is employed. To simplify grid generations, a zonal approach with a composite zonal grid system is implemented, in which periodic boundaries are treated as zonal boundaries. A new time-linearization of the inviscid fluxes evaluated by the Roe's approximate Riemann solver is presented in detail. No approximate factorization is introduced, and unfactored equations are solved by a pointwise relaxation method. To obtain time-accurate solutions, 30 inner iterations are performed at each time step. Numerical examples are presented for unsteady flows in a transonic turbine cascade where periodic unsteadiness is caused by the trailing edge vortex shedding.

Original languageEnglish
JournalAmerican Society of Mechanical Engineers (Paper)
Publication statusPublished - Jan 1 1991
EventInternational Gas Turbine and Aeroengine Congress and Exposition - Orlando, FL, USA
Duration: Jun 3 1991Jun 6 1991


All Science Journal Classification (ASJC) codes

  • Mechanical Engineering

Cite this