TY - GEN
T1 - Unsteady Navier-Stokes Simulation of transonic cascade flow using an unfactored implicit upwind relaxation scheme with inner iterations
AU - Furukawa, M.
AU - Nakano, T.
AU - Inoue, M.
N1 - Publisher Copyright:
© 1991 by ASME.
PY - 1991
Y1 - 1991
N2 - An implicit upwind scheme has been developed for Navier-Stokes simulations of unsteady flows in transonic cascades. The two-dimensional, Reynoldsaveraged Navier-Stokes equations are discretized in space using a cell-centered finite volume formulation and in time using the Euler implicit method. The inviscid fluxes are evaluated using a highly accurate upwind scheme based on a TVD formulation with the Roe's approximate Riemann solver, and the viscous fluxes are determined in a central differencing manner. The algebraic turbulence model of Baldwin and Lomax is employed. To simplify grid generations, a zonal approach with a composite zonal grid system is implemented, in which periodic boundaries are treated as zonal boundaries. A new time-linearization of the inviscid fluxes evaluated by the Roe's approximate Riemann solver is presented in detail. No approximate factorization is introduced, and unfactored equations are solved by a pointwise relaxation method. To obtain time-accurate solutions, 30 inner iterations are performed at each time step. Numerical examples are presented for unsteady flows in a transonic turbine cascade where periodic unsteadiness is caused by the trailing edge vortex shedding.
AB - An implicit upwind scheme has been developed for Navier-Stokes simulations of unsteady flows in transonic cascades. The two-dimensional, Reynoldsaveraged Navier-Stokes equations are discretized in space using a cell-centered finite volume formulation and in time using the Euler implicit method. The inviscid fluxes are evaluated using a highly accurate upwind scheme based on a TVD formulation with the Roe's approximate Riemann solver, and the viscous fluxes are determined in a central differencing manner. The algebraic turbulence model of Baldwin and Lomax is employed. To simplify grid generations, a zonal approach with a composite zonal grid system is implemented, in which periodic boundaries are treated as zonal boundaries. A new time-linearization of the inviscid fluxes evaluated by the Roe's approximate Riemann solver is presented in detail. No approximate factorization is introduced, and unfactored equations are solved by a pointwise relaxation method. To obtain time-accurate solutions, 30 inner iterations are performed at each time step. Numerical examples are presented for unsteady flows in a transonic turbine cascade where periodic unsteadiness is caused by the trailing edge vortex shedding.
UR - http://www.scopus.com/inward/record.url?scp=84924794733&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84924794733&partnerID=8YFLogxK
U2 - 10.1115/91-GT-223
DO - 10.1115/91-GT-223
M3 - Conference contribution
AN - SCOPUS:84924794733
T3 - Proceedings of the ASME Turbo Expo
BT - Turbomachinery
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 1991 International Gas Turbine and Aeroengine Congress and Exposition, GT 1991
Y2 - 3 June 1991 through 6 June 1991
ER -