Unusual Oxygen Partial Pressure Dependence of Electrical Transport of Single-Crystalline Metal Oxide Nanowires Grown by the Vapor-Liquid-Solid Process

Hiroshi Anzai, Tsunaki Takahashi, Masaru Suzuki, Masaki Kanai, Guozhu Zhang, Takuro Hosomi, Takehito Seki, Kazuki Nagashima, Naoya Shibata, Takeshi Yanagida

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

In general, the electrical conductivities of n-type semiconducting metal oxide nanostructures increase with the decrease in the oxygen partial pressure during crystal growth owing to the increased number of crystal imperfections including oxygen vacancies. In this paper, we report an unusual oxygen partial pressure dependence of the electrical conductivity of single-crystalline SnO 2 nanowires grown by a vapor-liquid-solid (VLS) process. The electrical conductivity of a single SnO 2 nanowire, measured using the four-probe method, substantially decreases by 2 orders of magnitude when the oxygen partial pressure for the crystal growth is reduced from 10 -3 to 10 -4 Pa. This contradicts the conventional trend of n-type SnO 2 semiconductors. Spatially resolved single-nanowire electrical transport measurements, microstructure analysis, plane-view electron energy-loss spectroscopy, and molecular dynamics simulations reveal that the observed unusual oxygen partial pressure dependence of the electrical transport is attributed to the intrinsic differences between the two crystal growth interfaces (LS and VS interfaces) in the critical nucleation of the crystal growth and impurity incorporation probability as a function of the oxygen partial pressure. The impurity incorporation probability at the LS interface is always lower than that at the VS interface, even under reduced oxygen partial pressures.

Original languageEnglish
Pages (from-to)1675-1681
Number of pages7
JournalNano Letters
Volume19
Issue number3
DOIs
Publication statusPublished - Mar 13 2019

All Science Journal Classification (ASJC) codes

  • Bioengineering
  • Chemistry(all)
  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Unusual Oxygen Partial Pressure Dependence of Electrical Transport of Single-Crystalline Metal Oxide Nanowires Grown by the Vapor-Liquid-Solid Process'. Together they form a unique fingerprint.

  • Cite this