Unveiling massive numbers of cancer-related urinary-microRNA candidates via nanowires

Takao Yasui, Takeshi Yanagida, Satoru Ito, Yuki Konakade, Daiki Takeshita, Tsuyoshi Naganawa, Kazuki Nagashima, Taisuke Shimada, Noritada Kaji, Yuta Nakamura, Ivan Adiyasa Thiodorus, Yong He, Sakon Rahong, Masaki Kanai, Hiroshi Yukawa, Takahiro Ochiya, Tomoji Kawai, Yoshinobu Baba

Research output: Contribution to journalArticlepeer-review

84 Citations (Scopus)

Abstract

Analyzing microRNAs (miRNAs) within urine extracellular vesicles (EVs) is important for realizing miRNA-based, simple, and noninvasive early disease diagnoses and timely medical checkups. However, the inherent difficulty in collecting dilute concentrations of EVs (<0.01 volume %) from urine has hindered the development of these diagnoses and medical checkups. We propose a device composed of nanowires anchored into a microfluidic substrate. This device enables EV collections at high efficiency and in situ extractions of various miRNAs of different sequences (around 1000 types) that significantly exceed the number of species being extracted by the conventional ultracentrifugation method. The mechanical stability of nanowires anchored into substrates during buffer flow and the electrostatic collection of EVs onto the nanowires are the two key mechanisms that ensure the success of the proposed device. In addition, we use our methodology to identify urinary miRNAs that could potentially serve as biomarkers for cancer not only for urologic malignancies (bladder and prostate) but also for nonurologic ones (lung, pancreas, and liver). The present device concept will provide a foundation for work toward the long-term goal of urine-based early diagnoses and medical checkups for cancer.

Original languageEnglish
Article numbere1701133
JournalScience Advances
Volume3
Issue number12
DOIs
Publication statusPublished - Dec 2017

All Science Journal Classification (ASJC) codes

  • General

Fingerprint

Dive into the research topics of 'Unveiling massive numbers of cancer-related urinary-microRNA candidates via nanowires'. Together they form a unique fingerprint.

Cite this