TY - JOUR
T1 - Upregulation of anticoagulant proteins, protein S and tissue factor pathway inhibitor, in the mouse myocardium with cardio-specific TNF-α overexpression
AU - Higuchi, Yoshihiro
AU - Kubota, Toru
AU - Koyanagi, Masamichi
AU - Maeda, Toyoki
AU - Feldman, Arthur M.
AU - Makino, Naoki
PY - 2012/6/1
Y1 - 2012/6/1
N2 - Heart failure (HF) has been recognized as a hypercoagulable state. However, the natural anticoagulation systems in the failing heart have not been studied. Recent experimental and clinical data have indicated that not only the thrombomodulin (TM)/protein C (PC) pathway but also the protein S (PS)/tissue factor pathway inhibitor (TFPI) system function as potent natural anticoagulants. To investigate the balance between procoagulant and anticoagulant activities in the failing heart, we measured the cardiac expression of tissue factor (TF), type 1 plasminogen activator inhibitor (PAI-1), TM, PC, PS, and TFPI by RT-PCR and/or Western blot analysis in male transgenic (TG) mice with heart-specific overexpression of TNF-a. Both procoagulant (TF and PAI-1) and anticoagulant (PS and TFPI) factors were upregulated in the myocardium of 24-wk-old TG (end-stage HF) but not in that of 4-wk-old TG (early decompensated HF) compared with the wild-type mice. Both factors were also upregulated in the infarcted myocardium at 3 days after coronary ligation in the wild-type mice. The expression of TM was downregulated in the TG heart, and PC was not detected in the hearts. The transcript levels of PS orphan receptors, Mer and Tyro3, but not Axl, were significantly upregulated in the TG heart. Double immunohistochemical staining revealed that myocardial infiltrating CD3positive T cells may produce PS in the TG myocardium. In conclusion, the PS/TFPI was upregulated in the myocardium of a different etiological model of HF, thus suggesting a role for the PS/TFPI system in the protection of the failing heart under both inflammatory and hypercoagulable states.
AB - Heart failure (HF) has been recognized as a hypercoagulable state. However, the natural anticoagulation systems in the failing heart have not been studied. Recent experimental and clinical data have indicated that not only the thrombomodulin (TM)/protein C (PC) pathway but also the protein S (PS)/tissue factor pathway inhibitor (TFPI) system function as potent natural anticoagulants. To investigate the balance between procoagulant and anticoagulant activities in the failing heart, we measured the cardiac expression of tissue factor (TF), type 1 plasminogen activator inhibitor (PAI-1), TM, PC, PS, and TFPI by RT-PCR and/or Western blot analysis in male transgenic (TG) mice with heart-specific overexpression of TNF-a. Both procoagulant (TF and PAI-1) and anticoagulant (PS and TFPI) factors were upregulated in the myocardium of 24-wk-old TG (end-stage HF) but not in that of 4-wk-old TG (early decompensated HF) compared with the wild-type mice. Both factors were also upregulated in the infarcted myocardium at 3 days after coronary ligation in the wild-type mice. The expression of TM was downregulated in the TG heart, and PC was not detected in the hearts. The transcript levels of PS orphan receptors, Mer and Tyro3, but not Axl, were significantly upregulated in the TG heart. Double immunohistochemical staining revealed that myocardial infiltrating CD3positive T cells may produce PS in the TG myocardium. In conclusion, the PS/TFPI was upregulated in the myocardium of a different etiological model of HF, thus suggesting a role for the PS/TFPI system in the protection of the failing heart under both inflammatory and hypercoagulable states.
UR - http://www.scopus.com/inward/record.url?scp=84861779234&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84861779234&partnerID=8YFLogxK
U2 - 10.1152/ajpheart.01026.2011
DO - 10.1152/ajpheart.01026.2011
M3 - Article
C2 - 22492716
AN - SCOPUS:84861779234
SN - 0363-6135
VL - 302
SP - H2352-H2362
JO - American Journal of Physiology
JF - American Journal of Physiology
IS - 11
ER -