Upregulation of calcium binding protein, S100A6, in activated astrocytes is linked to glutamate toxicity

Research output: Contribution to journalArticle

9 Citations (Scopus)

Abstract

S100A6 (calcyclin), an EF-hand calcium binding protein, is considered to exert various functions, e.g., cell proliferation and differentiation, calcium homeostasis, and neuronal degeneration. In this study, we aimed to investigate whether S100A6 might be linked to glutamate toxicity using three animal models and pharmacological interventions. We first examined the age-related changes in S100A6 immunoreactivity in the mouse hippocampus, considering that an important negative aspect of brain aging is linked to increased extracellular glutamate. The surface area of S100A6-positive (+) astrocytes was significantly larger in aged mice than in young mice, while the numbers of S100β+ astrocytes did not change with age. In the second experiment, we examined the alterations in S100A6 immunoreactivity in the injured hypoglossal nucleus, because glutamate toxicity is considered to contribute to neuronal death after axotomy. There was no apparent S100A6 immunoreactivity in the hypoglossal nucleus of sham control animals. However, intense labeling for S100A6 in activated astrocytes was observed in the axotomized hypoglossal nucleus of mice. Administration of ceftriaxone, an astrocyte glutamate transporter enhancer, to axotomized mice significantly decreased the immunoreactivity for S100A6. In the third experiment, we tested an animal model of epilepsy using kainic acid (KA), a glutamate analog. In the mouse hippocampus after KA injection, S100A6 immunoreactivity was significantly increased in astrocytes, and pyknotic changes were observed in CA3 pyramidal neurons. Treatment of MK-801, an N-methyl-d-aspartate receptor antagonist, counteracted the KA-induced increase in S100A6 immunoreactivity, and reduced the numbers of pyknotic neurons. Our results indicate that upregulation of astrocytic S100A6 in response to extracellular glutamate may be involved in neuronal damage under pathophysiological conditions.

Original languageEnglish
Pages (from-to)119-129
Number of pages11
JournalNeuroscience
Volume226
DOIs
Publication statusPublished - Dec 13 2012

Fingerprint

Calcium-Binding Proteins
Astrocytes
Glutamic Acid
Up-Regulation
Kainic Acid
Hippocampus
Animal Models
EF Hand Motifs
Amino Acid Transport System X-AG
Axotomy
Dizocilpine Maleate
Ceftriaxone
Pyramidal Cells
Cell Differentiation
Epilepsy
Homeostasis
Cell Proliferation
Pharmacology
Calcium
Neurons

All Science Journal Classification (ASJC) codes

  • Neuroscience(all)

Cite this

Upregulation of calcium binding protein, S100A6, in activated astrocytes is linked to glutamate toxicity. / Yamada, Jun; Jinno, Shozo.

In: Neuroscience, Vol. 226, 13.12.2012, p. 119-129.

Research output: Contribution to journalArticle

@article{c065bfe4a7f34d13aa49d9399a64afda,
title = "Upregulation of calcium binding protein, S100A6, in activated astrocytes is linked to glutamate toxicity",
abstract = "S100A6 (calcyclin), an EF-hand calcium binding protein, is considered to exert various functions, e.g., cell proliferation and differentiation, calcium homeostasis, and neuronal degeneration. In this study, we aimed to investigate whether S100A6 might be linked to glutamate toxicity using three animal models and pharmacological interventions. We first examined the age-related changes in S100A6 immunoreactivity in the mouse hippocampus, considering that an important negative aspect of brain aging is linked to increased extracellular glutamate. The surface area of S100A6-positive (+) astrocytes was significantly larger in aged mice than in young mice, while the numbers of S100β+ astrocytes did not change with age. In the second experiment, we examined the alterations in S100A6 immunoreactivity in the injured hypoglossal nucleus, because glutamate toxicity is considered to contribute to neuronal death after axotomy. There was no apparent S100A6 immunoreactivity in the hypoglossal nucleus of sham control animals. However, intense labeling for S100A6 in activated astrocytes was observed in the axotomized hypoglossal nucleus of mice. Administration of ceftriaxone, an astrocyte glutamate transporter enhancer, to axotomized mice significantly decreased the immunoreactivity for S100A6. In the third experiment, we tested an animal model of epilepsy using kainic acid (KA), a glutamate analog. In the mouse hippocampus after KA injection, S100A6 immunoreactivity was significantly increased in astrocytes, and pyknotic changes were observed in CA3 pyramidal neurons. Treatment of MK-801, an N-methyl-d-aspartate receptor antagonist, counteracted the KA-induced increase in S100A6 immunoreactivity, and reduced the numbers of pyknotic neurons. Our results indicate that upregulation of astrocytic S100A6 in response to extracellular glutamate may be involved in neuronal damage under pathophysiological conditions.",
author = "Jun Yamada and Shozo Jinno",
year = "2012",
month = "12",
day = "13",
doi = "10.1016/j.neuroscience.2012.08.068",
language = "English",
volume = "226",
pages = "119--129",
journal = "Neuroscience",
issn = "0306-4522",
publisher = "Elsevier Limited",

}

TY - JOUR

T1 - Upregulation of calcium binding protein, S100A6, in activated astrocytes is linked to glutamate toxicity

AU - Yamada, Jun

AU - Jinno, Shozo

PY - 2012/12/13

Y1 - 2012/12/13

N2 - S100A6 (calcyclin), an EF-hand calcium binding protein, is considered to exert various functions, e.g., cell proliferation and differentiation, calcium homeostasis, and neuronal degeneration. In this study, we aimed to investigate whether S100A6 might be linked to glutamate toxicity using three animal models and pharmacological interventions. We first examined the age-related changes in S100A6 immunoreactivity in the mouse hippocampus, considering that an important negative aspect of brain aging is linked to increased extracellular glutamate. The surface area of S100A6-positive (+) astrocytes was significantly larger in aged mice than in young mice, while the numbers of S100β+ astrocytes did not change with age. In the second experiment, we examined the alterations in S100A6 immunoreactivity in the injured hypoglossal nucleus, because glutamate toxicity is considered to contribute to neuronal death after axotomy. There was no apparent S100A6 immunoreactivity in the hypoglossal nucleus of sham control animals. However, intense labeling for S100A6 in activated astrocytes was observed in the axotomized hypoglossal nucleus of mice. Administration of ceftriaxone, an astrocyte glutamate transporter enhancer, to axotomized mice significantly decreased the immunoreactivity for S100A6. In the third experiment, we tested an animal model of epilepsy using kainic acid (KA), a glutamate analog. In the mouse hippocampus after KA injection, S100A6 immunoreactivity was significantly increased in astrocytes, and pyknotic changes were observed in CA3 pyramidal neurons. Treatment of MK-801, an N-methyl-d-aspartate receptor antagonist, counteracted the KA-induced increase in S100A6 immunoreactivity, and reduced the numbers of pyknotic neurons. Our results indicate that upregulation of astrocytic S100A6 in response to extracellular glutamate may be involved in neuronal damage under pathophysiological conditions.

AB - S100A6 (calcyclin), an EF-hand calcium binding protein, is considered to exert various functions, e.g., cell proliferation and differentiation, calcium homeostasis, and neuronal degeneration. In this study, we aimed to investigate whether S100A6 might be linked to glutamate toxicity using three animal models and pharmacological interventions. We first examined the age-related changes in S100A6 immunoreactivity in the mouse hippocampus, considering that an important negative aspect of brain aging is linked to increased extracellular glutamate. The surface area of S100A6-positive (+) astrocytes was significantly larger in aged mice than in young mice, while the numbers of S100β+ astrocytes did not change with age. In the second experiment, we examined the alterations in S100A6 immunoreactivity in the injured hypoglossal nucleus, because glutamate toxicity is considered to contribute to neuronal death after axotomy. There was no apparent S100A6 immunoreactivity in the hypoglossal nucleus of sham control animals. However, intense labeling for S100A6 in activated astrocytes was observed in the axotomized hypoglossal nucleus of mice. Administration of ceftriaxone, an astrocyte glutamate transporter enhancer, to axotomized mice significantly decreased the immunoreactivity for S100A6. In the third experiment, we tested an animal model of epilepsy using kainic acid (KA), a glutamate analog. In the mouse hippocampus after KA injection, S100A6 immunoreactivity was significantly increased in astrocytes, and pyknotic changes were observed in CA3 pyramidal neurons. Treatment of MK-801, an N-methyl-d-aspartate receptor antagonist, counteracted the KA-induced increase in S100A6 immunoreactivity, and reduced the numbers of pyknotic neurons. Our results indicate that upregulation of astrocytic S100A6 in response to extracellular glutamate may be involved in neuronal damage under pathophysiological conditions.

UR - http://www.scopus.com/inward/record.url?scp=84867315403&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84867315403&partnerID=8YFLogxK

U2 - 10.1016/j.neuroscience.2012.08.068

DO - 10.1016/j.neuroscience.2012.08.068

M3 - Article

C2 - 22982625

AN - SCOPUS:84867315403

VL - 226

SP - 119

EP - 129

JO - Neuroscience

JF - Neuroscience

SN - 0306-4522

ER -