Upregulation of Vesicular Glutamate Transporter 2 and STAT3 Activation in the Spinal Cord of Mice Receiving 3,3′-Iminodipropionitrile

Research output: Contribution to journalArticle

Abstract

Chronic administration of 3,3′-iminodipropionitrile (IDPN) causes axonal impairment. Although controversy still remains, it has been suggested that IDPN intoxication mimics the axonopathy of amyotrophic lateral sclerosis (ALS). Interestingly, recent studies including our own showed that signal transducer and activator of transcription 3 (STAT3) in spinal α-motoneurons was activated in both IDPN-treated mice and SOD1G93A mice, a genetic model of familial ALS. Because activation of STAT3 occurs in response to various stimuli, such as axonal injury, ischemia, and excessive glutamate, here we focused on a potential link between phosphorylated STAT3 (pSTAT3, an active form) and vesicular glutamate transporter 2 (VGluT2, a regulator of glutamate storage and release) in IDPN-treated mice and SOD1G93A mice. Impairment of axonal transport was confirmed by western blot analysis: the expression levels of phosphorylated neurofilament H were elevated in both models. As shown in SOD1G93A mice, the expression frequencies of VGluT2 in synaptophysin-positive (SYP)+ presynaptic terminals around spinal α-motoneurons were significantly higher in IDPN-treated mice than in vehicle controls. The coverages of spinal α-motoneurons by VGluT2+ presynaptic terminals were more elevated around pSTAT3+ cells than around pSTAT3 cells in IDPN-treated mice and SOD1G93A mice. Considering that excessive glutamate is shown to be involved in axonal impairment and STAT3 activation, the present results suggest that IDPN-induced upregulation of VGluT2 may result in an increase in glutamate, which might cause axonopathy and induction of pSTAT3. The link between upregulation of VGluT2 and activation of STAT3 via glutamate may represent a common pathological feature of IDPN-treated mice and SOD1G93A mice.

Original languageEnglish
Pages (from-to)768-780
Number of pages13
JournalNeurotoxicity Research
Volume33
Issue number4
DOIs
Publication statusPublished - May 1 2018

Fingerprint

Vesicular Glutamate Transport Protein 2
STAT3 Transcription Factor
Transcriptional Activation
Glutamic Acid
Spinal Cord
Up-Regulation
Chemical activation
Motor Neurons
Synaptophysin
Presynaptic Terminals
Axonal Transport
Intermediate Filaments
Genetic Models
Amyotrophic Lateral Sclerosis

All Science Journal Classification (ASJC) codes

  • Neuroscience(all)
  • Toxicology

Cite this

@article{907210625f4940fb8b633b0674a7ad39,
title = "Upregulation of Vesicular Glutamate Transporter 2 and STAT3 Activation in the Spinal Cord of Mice Receiving 3,3′-Iminodipropionitrile",
abstract = "Chronic administration of 3,3′-iminodipropionitrile (IDPN) causes axonal impairment. Although controversy still remains, it has been suggested that IDPN intoxication mimics the axonopathy of amyotrophic lateral sclerosis (ALS). Interestingly, recent studies including our own showed that signal transducer and activator of transcription 3 (STAT3) in spinal α-motoneurons was activated in both IDPN-treated mice and SOD1G93A mice, a genetic model of familial ALS. Because activation of STAT3 occurs in response to various stimuli, such as axonal injury, ischemia, and excessive glutamate, here we focused on a potential link between phosphorylated STAT3 (pSTAT3, an active form) and vesicular glutamate transporter 2 (VGluT2, a regulator of glutamate storage and release) in IDPN-treated mice and SOD1G93A mice. Impairment of axonal transport was confirmed by western blot analysis: the expression levels of phosphorylated neurofilament H were elevated in both models. As shown in SOD1G93A mice, the expression frequencies of VGluT2 in synaptophysin-positive (SYP)+ presynaptic terminals around spinal α-motoneurons were significantly higher in IDPN-treated mice than in vehicle controls. The coverages of spinal α-motoneurons by VGluT2+ presynaptic terminals were more elevated around pSTAT3+ cells than around pSTAT3− cells in IDPN-treated mice and SOD1G93A mice. Considering that excessive glutamate is shown to be involved in axonal impairment and STAT3 activation, the present results suggest that IDPN-induced upregulation of VGluT2 may result in an increase in glutamate, which might cause axonopathy and induction of pSTAT3. The link between upregulation of VGluT2 and activation of STAT3 via glutamate may represent a common pathological feature of IDPN-treated mice and SOD1G93A mice.",
author = "Tomohiro Ohgomori and Ryo Yamasaki and Jun-Ichi Kira and Shozo Jinno",
year = "2018",
month = "5",
day = "1",
doi = "10.1007/s12640-017-9822-x",
language = "English",
volume = "33",
pages = "768--780",
journal = "Neurotoxicity Research",
issn = "1029-8428",
publisher = "Springer New York",
number = "4",

}

TY - JOUR

T1 - Upregulation of Vesicular Glutamate Transporter 2 and STAT3 Activation in the Spinal Cord of Mice Receiving 3,3′-Iminodipropionitrile

AU - Ohgomori, Tomohiro

AU - Yamasaki, Ryo

AU - Kira, Jun-Ichi

AU - Jinno, Shozo

PY - 2018/5/1

Y1 - 2018/5/1

N2 - Chronic administration of 3,3′-iminodipropionitrile (IDPN) causes axonal impairment. Although controversy still remains, it has been suggested that IDPN intoxication mimics the axonopathy of amyotrophic lateral sclerosis (ALS). Interestingly, recent studies including our own showed that signal transducer and activator of transcription 3 (STAT3) in spinal α-motoneurons was activated in both IDPN-treated mice and SOD1G93A mice, a genetic model of familial ALS. Because activation of STAT3 occurs in response to various stimuli, such as axonal injury, ischemia, and excessive glutamate, here we focused on a potential link between phosphorylated STAT3 (pSTAT3, an active form) and vesicular glutamate transporter 2 (VGluT2, a regulator of glutamate storage and release) in IDPN-treated mice and SOD1G93A mice. Impairment of axonal transport was confirmed by western blot analysis: the expression levels of phosphorylated neurofilament H were elevated in both models. As shown in SOD1G93A mice, the expression frequencies of VGluT2 in synaptophysin-positive (SYP)+ presynaptic terminals around spinal α-motoneurons were significantly higher in IDPN-treated mice than in vehicle controls. The coverages of spinal α-motoneurons by VGluT2+ presynaptic terminals were more elevated around pSTAT3+ cells than around pSTAT3− cells in IDPN-treated mice and SOD1G93A mice. Considering that excessive glutamate is shown to be involved in axonal impairment and STAT3 activation, the present results suggest that IDPN-induced upregulation of VGluT2 may result in an increase in glutamate, which might cause axonopathy and induction of pSTAT3. The link between upregulation of VGluT2 and activation of STAT3 via glutamate may represent a common pathological feature of IDPN-treated mice and SOD1G93A mice.

AB - Chronic administration of 3,3′-iminodipropionitrile (IDPN) causes axonal impairment. Although controversy still remains, it has been suggested that IDPN intoxication mimics the axonopathy of amyotrophic lateral sclerosis (ALS). Interestingly, recent studies including our own showed that signal transducer and activator of transcription 3 (STAT3) in spinal α-motoneurons was activated in both IDPN-treated mice and SOD1G93A mice, a genetic model of familial ALS. Because activation of STAT3 occurs in response to various stimuli, such as axonal injury, ischemia, and excessive glutamate, here we focused on a potential link between phosphorylated STAT3 (pSTAT3, an active form) and vesicular glutamate transporter 2 (VGluT2, a regulator of glutamate storage and release) in IDPN-treated mice and SOD1G93A mice. Impairment of axonal transport was confirmed by western blot analysis: the expression levels of phosphorylated neurofilament H were elevated in both models. As shown in SOD1G93A mice, the expression frequencies of VGluT2 in synaptophysin-positive (SYP)+ presynaptic terminals around spinal α-motoneurons were significantly higher in IDPN-treated mice than in vehicle controls. The coverages of spinal α-motoneurons by VGluT2+ presynaptic terminals were more elevated around pSTAT3+ cells than around pSTAT3− cells in IDPN-treated mice and SOD1G93A mice. Considering that excessive glutamate is shown to be involved in axonal impairment and STAT3 activation, the present results suggest that IDPN-induced upregulation of VGluT2 may result in an increase in glutamate, which might cause axonopathy and induction of pSTAT3. The link between upregulation of VGluT2 and activation of STAT3 via glutamate may represent a common pathological feature of IDPN-treated mice and SOD1G93A mice.

UR - http://www.scopus.com/inward/record.url?scp=85030158416&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85030158416&partnerID=8YFLogxK

U2 - 10.1007/s12640-017-9822-x

DO - 10.1007/s12640-017-9822-x

M3 - Article

VL - 33

SP - 768

EP - 780

JO - Neurotoxicity Research

JF - Neurotoxicity Research

SN - 1029-8428

IS - 4

ER -