Utilizing a NaOH Promoter to Achieve Large Single-Domain Monolayer WS2 Films via Modified Chemical Vapor Deposition

Changyong Lan, Xiaolin Kang, Renjie Wei, You Meng, Senpo Yip, Heng Zhang, Johnny C. Ho

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

Because of their fascinating properties, two-dimensional (2D) nanomaterials have attracted a lot of attention for developing next-generation electronics and optoelectronics. However, there is still a lack of cost-effective, highly reproducible, and controllable synthesis methods for developing high-quality semiconducting 2D monolayers with a sufficiently large single-domain size. Here, utilizing a NaOH promoter and W foils as the W source, we have successfully achieved the fabrication of ultralarge single-domain monolayer WS2 films via a modified chemical vapor deposition method. With the proper introduction of a NaOH promoter, the single-domain size of monolayer WS2 can be increased to 550 μm, while the WS2 flakes can be well controlled by simply varying the growth duration and oxygen concentration in the carrier gas. Importantly, when they are fabricated into global backgated transistors, WS2 devices exhibit respectable peak electron mobility up to 1.21 cm2 V-1 s-1, which is comparable to those of many state-of-the-art WS2 transistors. Photodetectors based on these single-domain WS2 monolayers give an impressive photodetection performance with a maximum responsivity of 3.2 mA W-1. All these findings do not only provide a cost-effective platform for the synthesis of high-quality large single-domain 2D nanomaterials, but also facilitate their excellent intrinsic material properties for the next-generation electronic and optoelectronic devices.

Original languageEnglish
Pages (from-to)35238-35246
Number of pages9
JournalACS Applied Materials and Interfaces
Volume11
Issue number38
DOIs
Publication statusPublished - Sep 25 2019
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Materials Science(all)

Fingerprint Dive into the research topics of 'Utilizing a NaOH Promoter to Achieve Large Single-Domain Monolayer WS<sub>2</sub> Films via Modified Chemical Vapor Deposition'. Together they form a unique fingerprint.

Cite this