Abstract
Calorimeters with a high granularity are a fundamental requirement of the Particle Flow paradigm. This paper focuses on the prototype of a hadron calorimeter with analog readout, consisting of thirty-eight scintillator layers alternating with steel absorber planes. The scintillator plates are finely segmented into tiles individually read out via Silicon Photomultipliers. The presented results are based on data collected with pion beams in the energy range from 8 GeV to 100 GeV. The fine segmentation of the sensitive layers and the high sampling frequency allow for an excellent reconstruction of the spatial development of hadronic showers. A comparison between data and Monte Carlo simulations is presented, concerning both the longitudinal and lateral development of hadronic showers and the global response of the calorimeter. The performance of several GEANT4 physics lists with respect to these observables is evaluated.
Original language | English |
---|---|
Article number | P07005 |
Journal | Journal of Instrumentation |
Volume | 8 |
Issue number | 7 |
DOIs | |
Publication status | Published - Jul 2013 |
All Science Journal Classification (ASJC) codes
- Mathematical Physics
- Instrumentation
Access to Document
Other files and links
Fingerprint Dive into the research topics of 'Validation of GEANT4 Monte Carlo models with a highly granular scintillator-steel hadron calorimeter'. Together they form a unique fingerprint.
Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
Validation of GEANT4 Monte Carlo models with a highly granular scintillator-steel hadron calorimeter. / Adloff, C.; Blaha, J.; Blaising, J. J.; Drancourt, C.; Espargilière, A.; Gaglione, R.; Geffroy, N.; Karyotakis, Y.; Prast, J.; Vouters, G.; Francis, K.; Repond, J.; Schlereth, J.; Smith, J.; Xia, L.; Baldolemar, E.; Li, J.; Park, S. T.; Sosebee, M.; White, A. P.; Yu, J.; Buanes, T.; Eigen, G.; Mikami, Y.; Watson, N. K.; Mavromanolakis, G.; Thomson, M. A.; Ward, D. R.; Yan, W.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Apostolakis, J.; Dotti, A.; Folger, G.; Ivantchenko, V.; Uzhinskiy, V.; Benyamna, M.; Cârloganu, C.; Fehr, F.; Gay, P.; Manen, S.; Royer, L.; Blazey, G. C.; Dyshkant, A.; Lima, J. G.R.; Zutshi, V.; Hostachy, J. Y.; Morin, L.; Cornett, U.; David, D.; Falley, G.; Gadow, K.; Göttlicher, P.; Günter, C.; Hermberg, B.; Karstensen, S.; Krivan, F.; Lucaci-Timoce, A. I.; Lu, S.; Lutz, B.; Morozov, S.; Morgunov, V.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Terwort, M.; Vargas-Trevino, A.; Feege, N.; Garutti, E.; Marchesini, I.; Ramilli, M.; Eckert, P.; Harion, T.; Kaplan, A.; Schultz-Coulon, H. Ch; Shen, W.; Stamen, R.; Bilki, B.; Norbeck, E.; Onel, Y.; Wilson, G. W.; Kawagoe, K.; Dauncey, P. D.; Magnan, A. M.; Bartsch, V.; Wing, M.; Salvatore, F.; Calvo Alamillo, E.; Fouz, M. C.; Puerta-Pelayo, J.; Bobchenko, B.; Chadeeva, M.; Danilov, M.; Epifantsev, A.; Markin, O.; Mizuk, R.; Novikov, E.; Popov, V.; Rusinov, V.; Tarkovsky, E.; Kirikova, N.; Kozlov, V.; Smirnov, P.; Soloviev, Y.; Buzhan, P.; Ilyin, A.; Kantserov, V.; Kaplin, V.; Karakash, A.; Popova, E.; Tikhomirov, V.; Kiesling, C.; Seidel, K.; Simon, F.; Soldner, C.; Szalay, M.; Tesar, M.; Weuste, L.; Amjad, M. S.; Bonis, J.; Callier, S.; Conforti Di Lorenzo, S.; Cornebise, P.; Doublet, Ph; Dulucq, F.; Fleury, J.; Frisson, T.; Van Der Kolk, N.; Li, H.; Martin-Chassard, G.; Richard, F.; De La Taille, Ch; Pöschl, R.; Raux, L.; Rouëné, J.; Seguin-Moreau, N.; Anduze, M.; Boudry, V.; Brient, J. C.; Jeans, D.; Mora De Freitas, P.; Musat, G.; Reinhard, M.; Ruan, M.; Videau, H.; Bulanek, B.; Zacek, J.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Ruzicka, P.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Belhorma, B.; Ghazlane, H.; Takeshita, T.; Uozumi, S.; Götze, M.; Hartbrich, O.; Sauer, J.; Weber, S.; Zeitnitz, C.
In: Journal of Instrumentation, Vol. 8, No. 7, P07005, 07.2013.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Validation of GEANT4 Monte Carlo models with a highly granular scintillator-steel hadron calorimeter
AU - Adloff, C.
AU - Blaha, J.
AU - Blaising, J. J.
AU - Drancourt, C.
AU - Espargilière, A.
AU - Gaglione, R.
AU - Geffroy, N.
AU - Karyotakis, Y.
AU - Prast, J.
AU - Vouters, G.
AU - Francis, K.
AU - Repond, J.
AU - Schlereth, J.
AU - Smith, J.
AU - Xia, L.
AU - Baldolemar, E.
AU - Li, J.
AU - Park, S. T.
AU - Sosebee, M.
AU - White, A. P.
AU - Yu, J.
AU - Buanes, T.
AU - Eigen, G.
AU - Mikami, Y.
AU - Watson, N. K.
AU - Mavromanolakis, G.
AU - Thomson, M. A.
AU - Ward, D. R.
AU - Yan, W.
AU - Benchekroun, D.
AU - Hoummada, A.
AU - Khoulaki, Y.
AU - Apostolakis, J.
AU - Dotti, A.
AU - Folger, G.
AU - Ivantchenko, V.
AU - Uzhinskiy, V.
AU - Benyamna, M.
AU - Cârloganu, C.
AU - Fehr, F.
AU - Gay, P.
AU - Manen, S.
AU - Royer, L.
AU - Blazey, G. C.
AU - Dyshkant, A.
AU - Lima, J. G.R.
AU - Zutshi, V.
AU - Hostachy, J. Y.
AU - Morin, L.
AU - Cornett, U.
AU - David, D.
AU - Falley, G.
AU - Gadow, K.
AU - Göttlicher, P.
AU - Günter, C.
AU - Hermberg, B.
AU - Karstensen, S.
AU - Krivan, F.
AU - Lucaci-Timoce, A. I.
AU - Lu, S.
AU - Lutz, B.
AU - Morozov, S.
AU - Morgunov, V.
AU - Reinecke, M.
AU - Sefkow, F.
AU - Smirnov, P.
AU - Terwort, M.
AU - Vargas-Trevino, A.
AU - Feege, N.
AU - Garutti, E.
AU - Marchesini, I.
AU - Ramilli, M.
AU - Eckert, P.
AU - Harion, T.
AU - Kaplan, A.
AU - Schultz-Coulon, H. Ch
AU - Shen, W.
AU - Stamen, R.
AU - Bilki, B.
AU - Norbeck, E.
AU - Onel, Y.
AU - Wilson, G. W.
AU - Kawagoe, K.
AU - Dauncey, P. D.
AU - Magnan, A. M.
AU - Bartsch, V.
AU - Wing, M.
AU - Salvatore, F.
AU - Calvo Alamillo, E.
AU - Fouz, M. C.
AU - Puerta-Pelayo, J.
AU - Bobchenko, B.
AU - Chadeeva, M.
AU - Danilov, M.
AU - Epifantsev, A.
AU - Markin, O.
AU - Mizuk, R.
AU - Novikov, E.
AU - Popov, V.
AU - Rusinov, V.
AU - Tarkovsky, E.
AU - Kirikova, N.
AU - Kozlov, V.
AU - Smirnov, P.
AU - Soloviev, Y.
AU - Buzhan, P.
AU - Ilyin, A.
AU - Kantserov, V.
AU - Kaplin, V.
AU - Karakash, A.
AU - Popova, E.
AU - Tikhomirov, V.
AU - Kiesling, C.
AU - Seidel, K.
AU - Simon, F.
AU - Soldner, C.
AU - Szalay, M.
AU - Tesar, M.
AU - Weuste, L.
AU - Amjad, M. S.
AU - Bonis, J.
AU - Callier, S.
AU - Conforti Di Lorenzo, S.
AU - Cornebise, P.
AU - Doublet, Ph
AU - Dulucq, F.
AU - Fleury, J.
AU - Frisson, T.
AU - Van Der Kolk, N.
AU - Li, H.
AU - Martin-Chassard, G.
AU - Richard, F.
AU - De La Taille, Ch
AU - Pöschl, R.
AU - Raux, L.
AU - Rouëné, J.
AU - Seguin-Moreau, N.
AU - Anduze, M.
AU - Boudry, V.
AU - Brient, J. C.
AU - Jeans, D.
AU - Mora De Freitas, P.
AU - Musat, G.
AU - Reinhard, M.
AU - Ruan, M.
AU - Videau, H.
AU - Bulanek, B.
AU - Zacek, J.
AU - Cvach, J.
AU - Gallus, P.
AU - Havranek, M.
AU - Janata, M.
AU - Kvasnicka, J.
AU - Lednicky, D.
AU - Marcisovsky, M.
AU - Polak, I.
AU - Popule, J.
AU - Tomasek, L.
AU - Tomasek, M.
AU - Ruzicka, P.
AU - Sicho, P.
AU - Smolik, J.
AU - Vrba, V.
AU - Zalesak, J.
AU - Belhorma, B.
AU - Ghazlane, H.
AU - Takeshita, T.
AU - Uozumi, S.
AU - Götze, M.
AU - Hartbrich, O.
AU - Sauer, J.
AU - Weber, S.
AU - Zeitnitz, C.
PY - 2013/7
Y1 - 2013/7
N2 - Calorimeters with a high granularity are a fundamental requirement of the Particle Flow paradigm. This paper focuses on the prototype of a hadron calorimeter with analog readout, consisting of thirty-eight scintillator layers alternating with steel absorber planes. The scintillator plates are finely segmented into tiles individually read out via Silicon Photomultipliers. The presented results are based on data collected with pion beams in the energy range from 8 GeV to 100 GeV. The fine segmentation of the sensitive layers and the high sampling frequency allow for an excellent reconstruction of the spatial development of hadronic showers. A comparison between data and Monte Carlo simulations is presented, concerning both the longitudinal and lateral development of hadronic showers and the global response of the calorimeter. The performance of several GEANT4 physics lists with respect to these observables is evaluated.
AB - Calorimeters with a high granularity are a fundamental requirement of the Particle Flow paradigm. This paper focuses on the prototype of a hadron calorimeter with analog readout, consisting of thirty-eight scintillator layers alternating with steel absorber planes. The scintillator plates are finely segmented into tiles individually read out via Silicon Photomultipliers. The presented results are based on data collected with pion beams in the energy range from 8 GeV to 100 GeV. The fine segmentation of the sensitive layers and the high sampling frequency allow for an excellent reconstruction of the spatial development of hadronic showers. A comparison between data and Monte Carlo simulations is presented, concerning both the longitudinal and lateral development of hadronic showers and the global response of the calorimeter. The performance of several GEANT4 physics lists with respect to these observables is evaluated.
UR - http://www.scopus.com/inward/record.url?scp=84881262526&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84881262526&partnerID=8YFLogxK
U2 - 10.1088/1748-0221/8/07/P07005
DO - 10.1088/1748-0221/8/07/P07005
M3 - Article
AN - SCOPUS:84881262526
VL - 8
JO - Journal of Instrumentation
JF - Journal of Instrumentation
SN - 1748-0221
IS - 7
M1 - P07005
ER -