Various strength properties of aluminum alloys in high-pressure hydrogen gas environment

Saburo Matsuoka, Takashi Iijima, Satoko Yoshida, Junichiro Yamabe, Hisao Matsunaga

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Three types of strength tests, slow strain rate tensile (SSRT), fatigue life, and fatigue crack growth (FCG) tests, were performed using six types of aluminum alloys, 5083-O, 6061-T6, 6066-T6, 7N01-T5, 7N01-T6, and 7075-T6, in air and 115 MPa hydrogen gas at room temperature. All the strength properties of every material were not deteriorated in 115 MPa hydrogen gas. In all the materials, FCG rates were lower in 115 MPa hydrogen gas than in air. This was considered to be due to a lack of water-or oxygen-adsorbed film at crack tip in hydrogen gas. In 5083-O, 6061-T6 and 6066-T6, relative reduction in area (RRA) were remarkably higher in 115 MPa hydrogen gas than in air. These differences were attributed to a hydrostatic pressure produced in 115 MPa hydrogen gas. In contrast, in 7N01-T5, 7N01-T6 and 7075-T6, the values of RRA in 115 MPa hydrogen gas were nearly the same as those in air. Observation of fractured specimens inferred that the degree of such a hydrogen-induced improvement was determined by the fracture mode (e.g. cupand-cone or shear fracture), which is dominated by the microstructure morphology.

Original languageEnglish
Title of host publicationMaterials and Fabrication
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791858981
DOIs
Publication statusPublished - Jan 1 2019
Externally publishedYes
EventASME 2019 Pressure Vessels and Piping Conference, PVP 2019 - San Antonio, United States
Duration: Jul 14 2019Jul 19 2019

Publication series

NameAmerican Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP
Volume6B-2019
ISSN (Print)0277-027X

Conference

ConferenceASME 2019 Pressure Vessels and Piping Conference, PVP 2019
CountryUnited States
CitySan Antonio
Period7/14/197/19/19

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Various strength properties of aluminum alloys in high-pressure hydrogen gas environment'. Together they form a unique fingerprint.

Cite this