Vibrating powder beds: A comparison of experimental and Distinct Element Method simulated data

A. J. Matchett, T. Yanagida, Y. Okudaira, S. Kobayashi

Research output: Contribution to journalArticlepeer-review

31 Citations (Scopus)

Abstract

Experimental data from a vibrating bed of particles were compared with data from a two-dimensional Distinct Element Method (DEM) simulation on the basis of energy dissipation. Experiments were performed on a range of materials including glass spheres, bronze spheres, acrylic beads and NBR rubber granules, in a cell subjected to single frequency, vibrational excitation over a range of acceleration magnitudes. The driving force and system acceleration were measured through an impedance head, and energy consumptions were calculated from the data. A two-dimensional commercial DEM package was used to simulate the above experiments. A range of particle sizes and properties were studied. Internal energy and energy dissipation data were manipulated to give energy dissipation parameters equivalent to the experimental data. The DEM simulation was able to qualitatively reproduce major features found in the experimental data. However, some features could not be reproduced by the DEM simulations, and many issues require further investigation. Internal energy data from the DEM simulation were used to determine mechanisms of energy dissipation and discontinuities in the rate of energy dissipation. Copyright (C) 2000 Elsevier Science S.A.

Original languageEnglish
Pages (from-to)13-30
Number of pages18
JournalPowder Technology
Volume107
Issue number1-2
DOIs
Publication statusPublished - Jan 24 2000
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Chemical Engineering(all)

Fingerprint Dive into the research topics of 'Vibrating powder beds: A comparison of experimental and Distinct Element Method simulated data'. Together they form a unique fingerprint.

Cite this