Viscosity Evaluation of Simulated Foaming Slag via Interfacial Reaction at Room Temperature

Shota Hatano, Shogo Hayashi, Noritaka Saito, Kunihiko Nakashima

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

CaO-based slag used in hot metal pretreatment and converters in steelmaking processes typically contains dispersed gas phases. This is called foaming slag, which is known to degrade the quality of slag. The rheological behavior of this slag is dependent on the dispersed part of the gas phase. This gas is generated by the chemical reaction between the hot metal and the slag. In this study, simulated foaming slag was prepared by reacting sodium hydrogen carbonate and oxalic acid in glycerol, which disperses carbon dioxide. Next, we systematically investigated the effects of the volume fraction of the dispersed gas phase and the proportion of glycerol on the viscosity and bubble diameter. According to the model used in this study, the bubbles were smaller than those in the model in which the gas was directly dispersed. The bubble size increased as the gas phase ratio and liquid viscosity increased, likely because the bubble growth is promoted by increase in the gas phase ratio and liquid phase viscosity, and the frequency with which the bubbles contact one other. The increase of the gas phase ratio at low liquid-phase viscosity and low shear rate caused an increase in both apparent viscosity and relative viscosity, which was obtained by dividing the apparent viscosity by liquid-phase viscosity. However, these increases in viscosity were not observed at a high shear rate. This is likely because the mechanism of bubble diffusion and flow is affected by the liquid-phase viscosity and shear rate. We found that the model in this study exemplified a Herschel-Bulkley fluid. In addition, we proposed an equation for measuring viscosity from the gas phase ratio.

Original languageEnglish
Article numberA9
Pages (from-to)2904-2914
Number of pages11
Journalisij international
Volume61
Issue number12
DOIs
Publication statusPublished - 2021

All Science Journal Classification (ASJC) codes

  • Mechanics of Materials
  • Mechanical Engineering
  • Metals and Alloys
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Viscosity Evaluation of Simulated Foaming Slag via Interfacial Reaction at Room Temperature'. Together they form a unique fingerprint.

Cite this