Abstract
Horizontally aligned growth of single-walled carbon nanotubes (SWNTs) on single-crystal surfaces has attracted great interest in terms of nanoelectronic applications, but their growth mechanism is not fully understood. We report on the 13C/12C isotope-labeled growth of SWNTs on a sapphire surface to visualize their growth process. Switching carbon feedstock from 13CH4 to 12CH4 during SWNT growth induces a gradient distribution of the carbon isotopes along the tube axis. From the Raman mapping analysis, we succeeded to observe the gradual change in the isotope distribution of individual SWNTs. The results indicate the base-growth mode for the horizontally aligned SWNTs, which suggests that nanotube-sapphire interaction is essential to alignment. This method offers a unique technique to analyze the nanotube growth mechanism and kinetics.
Original language | English |
---|---|
Pages (from-to) | 1735-1738 |
Number of pages | 4 |
Journal | Journal of Physical Chemistry C |
Volume | 112 |
Issue number | 6 |
DOIs | |
Publication status | Published - Feb 14 2008 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Energy(all)
- Physical and Theoretical Chemistry
- Surfaces, Coatings and Films