Visualization of SOFC anode by dual imaging method using infrared and visible light cameras

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)

Abstract

Thermography imaging can be applied for the surface of an SOFC electrode to evaluate the spatial distribution of reforming and electrode reactions. For getting a correct temperature distribution by thermography, emissivity change on the object surface caused by chemical reactions or material coverage must be precisely evaluated. In-situ observation using both infrared and visible light dual cameras enables us to obtain precise emissivity change and thus temperature distribution, because the influence of emissivity change can be corrected by the visible light imaging technique. In this study, this imaging method is applied for an anode material which was exposed to a fuel flow causing coke formation, and the information on the carbon distribution was successfully separated on the anode surface to obtain the true temperature distribution.

Original languageEnglish
Title of host publicationSolid Oxide Fuel Cells 14, SOFC 2015
EditorsK. Eguchi, S. C. Singhal
PublisherElectrochemical Society Inc.
Pages1115-1120
Number of pages6
Edition1
ISBN (Electronic)9781607685395
DOIs
Publication statusPublished - Jan 1 2015
Event14th International Symposium on Solid Oxide Fuel Cells, SOFC 2015; held as part of the Electrochemical Society, ECS Conference on Electrochemical Energy Conversion and Storage - Glasgow, United Kingdom
Duration: Jul 26 2015Jul 31 2015

Publication series

NameECS Transactions
Number1
Volume68
ISSN (Print)1938-5862
ISSN (Electronic)1938-6737

Other

Other14th International Symposium on Solid Oxide Fuel Cells, SOFC 2015; held as part of the Electrochemical Society, ECS Conference on Electrochemical Energy Conversion and Storage
CountryUnited Kingdom
CityGlasgow
Period7/26/157/31/15

All Science Journal Classification (ASJC) codes

  • Engineering(all)

Fingerprint Dive into the research topics of 'Visualization of SOFC anode by dual imaging method using infrared and visible light cameras'. Together they form a unique fingerprint.

Cite this