Visualization of trapped hydrogen along grain boundaries and its roles on hydrogen-induced intergranular fracture in slow strain rate tensile testing of pure nickel

Kentaro Wada, Junichiro Yamabe, Hisao Matsunaga

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

It has been reported that hydrogen accumulation along grain boundaries (GBs) is an important process in the hydrogen embrittlement (HE) in pure Ni. However, there are no quantitative studies that elucidate the behavior of hydrogen accumulation and its effect on HE. Consequently, the segregating behavior of hydrogen along GBs and its role in intergranular (IG) fracture in pure Ni were examined in the present research, via a combination of thermal desorption analysis, secondary iron mass spectrometry, Auger electron spectroscopy and slow strain rate tensile testing. It was successfully demonstrated that the hydrogen trapped at GBs and the sulfur segregated along GBs contributed to the hydrogen-trapping. In addition, the contribution of trapped hydrogen on the hydrogen-induced ductility loss was quantitatively investigated. The results revealed a decreased reduction in area (RA) with a concomitant increase in trap-site occupancy, implying that the trapped hydrogen controlled the hydrogen-induced IG fracture and ductility loss in pure Ni.

Original languageEnglish
Title of host publicationMaterials and Fabrication
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791883860
DOIs
Publication statusPublished - 2020
EventASME 2020 Pressure Vessels and Piping Conference, PVP 2020 - Virtual, Online
Duration: Aug 3 2020 → …

Publication series

NameAmerican Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP
Volume6
ISSN (Print)0277-027X

Conference

ConferenceASME 2020 Pressure Vessels and Piping Conference, PVP 2020
CityVirtual, Online
Period8/3/20 → …

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Visualization of trapped hydrogen along grain boundaries and its roles on hydrogen-induced intergranular fracture in slow strain rate tensile testing of pure nickel'. Together they form a unique fingerprint.

Cite this