Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions

M. J. Fernández-Merino, L. Guardia, J. I. Paredes, S. Villar-Rodil, P. Solís-Fernández, A. Martínez-Alonso, J. M.D. Tascón

Research output: Contribution to journalArticlepeer-review

1009 Citations (Scopus)

Abstract

The preparation of solution-processable graphene from graphite oxide typically involves a hydrazine reduction step, but the use of such a reagent in the large-scale implementation of this approach is not desirable due to its high toxicity. Here, we compare the deoxygenation efficiency of graphene oxide suspensions by different reductants (sodium borohydride, pyrogallol, and vitamin C, in addition to hydrazine), as well as by heating the suspensions under alkaline conditions. In almost all cases, the degree of reduction attainable and the subsequent restoration of relevant properties (e.g., electrical conductivity) lag significantly behind those achieved with hydrazine. Only vitamin C is found to yield highly reduced suspensions in a way comparable to those provided by hydrazine. Stable suspensions of vitamin C-reduced graphene oxide can be prepared not only in water but also in common organic solvents, such as N,N-dimethylformamide (DMF) or N-methyl-2-pyrrolidone (NMP). These results open the perspective of replacing hydrazine in the reduction of graphene oxide suspensions by an innocuous and safe reductant of similar efficacy, thus facilitating the use of graphene-based materials for large-scale applications.

Original languageEnglish
Pages (from-to)6426-6432
Number of pages7
JournalJournal of Physical Chemistry C
Volume114
Issue number14
DOIs
Publication statusPublished - Apr 15 2010
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Energy(all)
  • Physical and Theoretical Chemistry
  • Surfaces, Coatings and Films

Fingerprint Dive into the research topics of 'Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions'. Together they form a unique fingerprint.

Cite this