Voltage-dependent N-type Ca2+ channels in endothelial cells contribute to oxidative stress-related endothelial dysfunction induced by angiotensin II in mice

Motohiro Nishida, Tatsuya Ishikawa, Shota Saiki, Caroline Sunggip, Shizuka Aritomi, Eri Harada, Koichiro Kuwahara, Katsuya Hirano, Yasuo Mori, Shokei Kim-Mitsuyama

Research output: Contribution to journalArticle

8 Citations (Scopus)

Abstract

N-type voltage-dependent Ca2+channels (VDCCs), expressed predominantly in the nervous system, play pivotal roles in sympathetic regulation of the circulatory system. Although N-type VDCCs are also reportedly expressed in the vasculature, their pathophysiological role is obscure. We demonstrated that oxidative stress-related endothelial dysfunction induced by angiotensin (Ang) II is suppressed in mice lacking the N-type VDCC α1B subunit (Cav 2.2). Impairment of endothelium-dependent relaxation of the thoracic aorta observed following Ang II treatment in wild-type (WT) mice was significantly attenuated in the Ang II-treated Cav 2.2-deficient mice, despite the comparable increase of the blood pressure in the two groups of mice. The thoracic aorta of the Cav 2.2-deficient mice showed a smaller positive area of oxidative stress markers as compared to the WT mice. The Ang II-induced endothelial dysfunction was also suppressed by cilnidipine, an L/N-type VDCC blocker, but not by amlodipine, an L-type VDCC blocker; however, this unique effect of cilnidipine was completely abolished in the Cav 2.2-deficient mice. Furthermore, selective inhibition of N-type VDCCs by ω-conotoxin GVIA dramatically suppressed the production of reactive oxygen species (ROS) as well as agonist-induced Ca2+ influx in the vascular endothelial cells. These results suggest that N-type VDCCs expressed in the vascular endothelial cells contribute to ROS production and endothelial dysfunction observed in Ang II-treated hypertensive mice.

Original languageEnglish
Pages (from-to)210-216
Number of pages7
JournalBiochemical and Biophysical Research Communications
Volume434
Issue number2
DOIs
Publication statusPublished - May 3 2013

All Science Journal Classification (ASJC) codes

  • Biophysics
  • Biochemistry
  • Molecular Biology
  • Cell Biology

Fingerprint Dive into the research topics of 'Voltage-dependent N-type Ca<sup>2+</sup> channels in endothelial cells contribute to oxidative stress-related endothelial dysfunction induced by angiotensin II in mice'. Together they form a unique fingerprint.

  • Cite this