Abstract
We report on the inhomogeneous electric field response of the magnetization in a La1-xSrxMnO3 (LSMO) film on a ferroelectric [Pb(Mg1/2Nb2/3)O3]1-x-[PbTiO3]x (PMN-PT) substrate. X-ray diffraction patterns of the LSMO film confirm successful epitaxial growth of LSMO along the [0 0 1] orientation of PMN-PT, where a sudden lattice relaxation in the LSMO film occurs due to a large lattice mismatch. The LSMO film exhibits magnetic anisotropy that lies in-plane and isotropic in all directions of the plane with a Curie temperature of 345 K. The polarization versus electric field (P-E) loop shows that a sharp switching of electric dipoles occurs and the switching field decreases with decreasing maximum applied electric field. The coexistence of hysteresis-like (non-volatile) and butterfly-like (volatile) behavior of the voltage induced Kerr signal is observed. We consider that 109° switching of the ferroelectric domains is responsible for the rotation of magnetic easy axis that results in the hysteresis like behavior while 71° and 180° switching of the ferroelectric polarization has no effect on the magnetic anisotropy, leading to the butterfly-like behavior.
Original language | English |
---|---|
Article number | 054003 |
Journal | Journal of Physics D: Applied Physics |
Volume | 53 |
Issue number | 5 |
DOIs | |
Publication status | Published - 2020 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics
- Acoustics and Ultrasonics
- Surfaces, Coatings and Films
Access to Document
Other files and links
Fingerprint
Dive into the research topics of 'Voltage-driven strain-induced coexistence of both volatile and non-volatile interfacial magnetoelectric behaviors in LSMO/PMN-PT (0 0 1)'. Together they form a unique fingerprint.Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
Voltage-driven strain-induced coexistence of both volatile and non-volatile interfacial magnetoelectric behaviors in LSMO/PMN-PT (0 0 1). / Pati, Satya Prakash; Taniyama, Tomoyasu.
In: Journal of Physics D: Applied Physics, Vol. 53, No. 5, 054003, 2020.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Voltage-driven strain-induced coexistence of both volatile and non-volatile interfacial magnetoelectric behaviors in LSMO/PMN-PT (0 0 1)
AU - Pati, Satya Prakash
AU - Taniyama, Tomoyasu
N1 - Funding Information: Satya Prakash Pati Tomoyasu Taniyama Satya Prakash Pati Tomoyasu Taniyama Department of Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan Satya Prakash Pati and Tomoyasu Taniyama 2020-01-30 2019-11-25 11:56:49 cgi/release: Article released bin/incoming: New from .zip Kato Foundation for Promotion of Science https://doi.org/10.13039/501100004050 Asahi Glass Foundation https://doi.org/10.13039/100007684 Core Research for Evolutional Science and Technology https://doi.org/10.13039/501100003382 JPMJCR18J1 Japan Society for the Promotion of Science https://doi.org/10.13039/501100001691 JP17H03377 JP18F18353 yes We report on the inhomogeneous electric field response of the magnetization in a La 1− x Sr x MnO 3 (LSMO) film on a ferroelectric [Pb(Mg 1/2 Nb 2/3 )O 3 ] 1− x -[PbTiO 3 ] x (PMN-PT) substrate. X-ray diffraction patterns of the LSMO film confirm successful epitaxial growth of LSMO along the [0 0 1] orientation of PMN-PT, where a sudden lattice relaxation in the LSMO film occurs due to a large lattice mismatch. The LSMO film exhibits magnetic anisotropy that lies in-plane and isotropic in all directions of the plane with a Curie temperature of 345 K. The polarization versus electric field ( P – E ) loop shows that a sharp switching of electric dipoles occurs and the switching field decreases with decreasing maximum applied electric field. The coexistence of hysteresis-like (non-volatile) and butterfly-like (volatile) behavior of the voltage induced Kerr signal is observed. We consider that 109� switching of the ferroelectric domains is responsible for the rotation of magnetic easy axis that results in the hysteresis like behavior while 71� and 180� switching of the ferroelectric polarization has no effect on the magnetic anisotropy, leading to the butterfly-like behavior. � 2019 IOP Publishing Ltd [1] Manipatruni S, Nikonov D E, Lin C-C, Gosavi T A, Liu H, Prasad B, Huang Y-L, Bonturim E, Ramesh R and Young I A 2019 Nature 565 35 10.1038/s41586-018-0770-2 Manipatruni S, Nikonov D E, Lin C-C, Gosavi T A, Liu H, Prasad B, Huang Y-L, Bonturim E, Ramesh R and Young I A Nature 565 2019 35 [2] Manipatruni S, Nikonov D E and Young I A 2018 Nat. Phys. 14 338 10.1038/s41567-018-0101-4 Manipatruni S, Nikonov D E and Young I A Nat. Phys. 14 2018 338 [3] Al-Mahdawi M, Pati S P, Shiokawa Y, Ye S, Nozaki T and Sahashi M 2017 Phys. Rev. B 95 144423 10.1103/PhysRevB.95.144423 Al-Mahdawi M, Pati S P, Shiokawa Y, Ye S, Nozaki T and Sahashi M Phys. Rev. 95 B 144423 2017 [4] Eerenstein W, Mathur N D and Scott J F 2006 Nature 442 759 10.1038/nature05023 Eerenstein W, Mathur N D and Scott J F Nature 442 2006 759 [5] Bibes M and Barthelemy A 2008 Nat. Mater. 7 425 10.1038/nmat2189 Bibes M and Barthelemy A Nat. Mater. 7 2008 425 [6] Wang J et al 2003 Science 299 1719 10.1126/science.1080615 Wang J et al Science 299 2003 1719 [7] Cheong S-W and Mostovoy M 2007 Nat. Mater. 6 13 10.1038/nmat1804 Cheong S-W and Mostovoy M Nat. Mater. 6 2007 13 [8] Pati S P, Al-Mahdawi M, Ye S, Shiokawa Y, Nozaki T and Sahashi M 2016 Phys. Rev. B 94 224417 10.1103/PhysRevB.94.224417 Pati S P, Al-Mahdawi M, Ye S, Shiokawa Y, Nozaki T and Sahashi M Phys. Rev. 94 B 224417 2016 [9] Taniyama T 2015 J. Phys.: Condens. Matter 27 504001 10.1088/0953-8984/27/50/504001 Taniyama T J. Phys.: Condens. Matter 0953-8984 27 50 504001 2015 [10] Ramesh R and Spaldin N A 2007 Nat. Mater. 6 21 10.1038/nmat1805 Ramesh R and Spaldin N A Nat. Mater. 6 2007 21 [11] Heyderman L J and Stamps R L 2013 J. Phys.: Condens. Matter 25 363201 10.1088/0953-8984/25/36/363201 Heyderman L J and Stamps R L J. Phys.: Condens. Matter 0953-8984 25 36 363201 2013 [12] Duan C G, Jaswal S S and Tsymbal E Y 2006 Phys. Rev. Lett. 97 047201 10.1103/PhysRevLett.97.047201 Duan C G, Jaswal S S and Tsymbal E Y Phys. Rev. Lett. 97 047201 2006 [13] Duan C G, Velev J P, Sabirianov R F, Mei W N, Jaswal S S and Tsymbal E Y 2008 Appl. Phys. Lett. 92 122905 10.1063/1.2901879 Duan C G, Velev J P, Sabirianov R F, Mei W N, Jaswal S S and Tsymbal E Y Appl. Phys. Lett. 92 122905 2008 [14] Valencia S et al 2011 Nat. Mater. 10 753 10.1038/nmat3098 Valencia S et al Nat. Mater. 10 2011 753 [15] Borisov P, Hochstrat A, Chen X, Kleemann W and Binek C 2005 Phys. Rev. Lett. 94 117203 10.1103/PhysRevLett.94.117203 Borisov P, Hochstrat A, Chen X, Kleemann W and Binek C Phys. Rev. Lett. 94 117203 2005 [16] Nozaki T, Al-Mahdawi M, Pati S P, Ye S, Shiokawa Y and Sahashi M 2017 Japan. J. Appl. Phys. 56 070302 10.7567/JJAP.56.070302 Nozaki T, Al-Mahdawi M, Pati S P, Ye S, Shiokawa Y and Sahashi M Japan. J. Appl. Phys. 0021-4922 56 070302 2017 [17] Wu S M, Cybart Shane A, Yu P, Rossell M D, Zhang J X, Ramesh R and Dynes R C 2010 Nat. Mater. 9 756 10.1038/nmat2803 Wu S M, Cybart Shane A, Yu P, Rossell M D, Zhang J X, Ramesh R and Dynes R C Nat. Mater. 9 2010 756 [18] Sahoo S, Polisetty S, Duan C G, Sitaram S, Jaswal S and Tsymbal E Y 2007 Phys. Rev. B 76 092108 10.1103/PhysRevB.76.092108 Sahoo S, Polisetty S, Duan C G, Sitaram S, Jaswal S and Tsymbal E Y Phys. Rev. 76 B 092108 2007 [19] Lou J, Liu M, Reed D, Ren Y and Sun N X 2009 Adv. Mater. 21 4711 10.1002/adma.200901131 Lou J, Liu M, Reed D, Ren Y and Sun N X Adv. Mater. 21 2009 4711 [20] Venkataiah G, Shirahata Y, Itoh M and Taniyama T 2011 Appl. Phys. Lett. 99 102506 10.1063/1.3628464 Venkataiah G, Shirahata Y, Itoh M and Taniyama T Appl. Phys. Lett. 99 102506 2011 [21] Roy K, Bandyopadhyay S and Atulasimha J 2011 Appl. Phys. Lett. 99 063108 10.1063/1.3624900 Roy K, Bandyopadhyay S and Atulasimha J Appl. Phys. Lett. 99 063108 2011 [22] Hu J M, Li Z, Chen L Q and Nan C W 2011 Nat. Commun. 2 553 10.1038/ncomms1564 Hu J M, Li Z, Chen L Q and Nan C W Nat. Commun. 2 2011 553 [23] Zhu J G 2008 Proc. IEEE 96 1786 10.1109/JPROC.2008.2004313 Zhu J G Proc. IEEE 0018-9219 96 2008 1786 [24] Heron J T, Trassin M, Ashraf K, Gajek M, He Q, Yang S Y, Nikonov D E, Chu Y-H, Salahuddin S and Ramesh R 2011 Phys. Rev. Lett. 107 217202 10.1103/PhysRevLett.107.217202 Heron J T, Trassin M, Ashraf K, Gajek M, He Q, Yang S Y, Nikonov D E, Chu Y-H, Salahuddin S and Ramesh R Phys. Rev. Lett. 107 217202 2011 [25] Wu T, Bur A, Wong K, Leon Hockel J, Hsu C J, Kim H K D, Wang K L and Carman G P 2011 J. Appl. Phys. 109 07D732 10.1063/1.3563040 Wu T, Bur A, Wong K, Leon Hockel J, Hsu C J, Kim H K D, Wang K L and Carman G P J. Appl. Phys. 109 07D732 2011 [26] Biegalski M D, Dorr K, Kim D H and Christen H M 2010 Appl. Phys. Lett. 96 151905 10.1063/1.3374323 Biegalski M D, Dorr K, Kim D H and Christen H M Appl. Phys. Lett. 96 151905 2010 [27] Zhou P et al 2017 Appl. Phys. Exp. 10 023201 10.7567/APEX.10.023201 Zhou P et al Appl. Phys. Exp. 1882-0786 10 2 023201 2017 [28] Guo Q, Xu X, Wang F, Lu Y, Chen J, Wu Y, Meng K, Wu Y, Miao J and Jiang Y 2018 Nanotechnology 29 224003 10.1088/1361-6528/aab5fb Guo Q, Xu X, Wang F, Lu Y, Chen J, Wu Y, Meng K, Wu Y, Miao J and Jiang Y Nanotechnology 0957-4484 29 22 224003 2018 [29] Wang J, Hu F X, Li R W, Sun J R and Shen B G 2010 Appl. Phys. Lett. 96 052501 10.1063/1.3298360 Wang J, Hu F X, Li R W, Sun J R and Shen B G Appl. Phys. Lett. 96 052501 2010 [30] Zheng R K, Wang Y, Chan H L W, Choy C L and Luo H S 2007 Appl. Phys. Lett. 90 152904 10.1063/1.2721399 Zheng R K, Wang Y, Chan H L W, Choy C L and Luo H S Appl. Phys. Lett. 90 152904 2007 [31] Zheng R K, Wang J, Zhou X Y, Wang Y, Chan H L W, Choy C L and Luo H S 2006 J. Appl. Phys. 99 123714 10.1063/1.2202693 Zheng R K, Wang J, Zhou X Y, Wang Y, Chan H L W, Choy C L and Luo H S J. Appl. Phys. 99 123714 2006 [32] Thiele C, Dörr K, Fähler S, Schultz L, Meyer D C, Levin A A and Paufler P 2005 Appl. Phys. Lett. 87 262502 10.1063/1.2150273 Thiele C, Dörr K, Fähler S, Schultz L, Meyer D C, Levin A A and Paufler P Appl. Phys. Lett. 87 262502 2005 [33] Kim J-Y, Yao L and Dijken S 2013 J. Phys.: Condens. Matter 25 082205 10.1088/0953-8984/25/8/082205 Kim J-Y, Yao L and Dijken S J. Phys.: Condens. Matter 0953-8984 25 8 082205 2013 [34] Zhao W, Zhang D, Meng D, Huang W, Feng L, Hou C, Lu Y, Yin Y and Li X 2016 Appl. Phys. Lett. 109 263502 10.1063/1.4973355 Zhao W, Zhang D, Meng D, Huang W, Feng L, Hou C, Lu Y, Yin Y and Li X Appl. Phys. Lett. 109 263502 2016 [35] Chopdekar R V, Buzzi M, Jenkins C, Arenholz E, Nolting F and Takamura Yayoi 2016 Sci. Rep. 6 27501 10.1038/srep27501 Chopdekar R V, Buzzi M, Jenkins C, Arenholz E, Nolting F and Takamura Yayoi Sci. Rep. 6 2016 27501 [36] Xue X et al 2017 ACS Nano 11 9286 10.1021/acsnano.7b04653 Xue X et al ACS Nano 11 2017 9286 [37] Heidler J, Piamonteze C, Chopdekar R V, Uribe-Laverde M A, Alberca A, Buzzi M, Uldry A, Delley B, Bernhard C and Nolting F 2015 Phys. Rev. B 91 024406 10.1103/PhysRevB.91.024406 Heidler J, Piamonteze C, Chopdekar R V, Uribe-Laverde M A, Alberca A, Buzzi M, Uldry A, Delley B, Bernhard C and Nolting F Phys. Rev. 91 B 024406 2015 [38] Hu J-M, Nan C-W and Chen L-Q 2011 Phys. Rev. B 83 134408 10.1103/PhysRevB.83.134408 Hu J-M, Nan C-W and Chen L-Q Phys. Rev. 83 B 134408 2011 [39] Hu J-M, Shu L, Li Z, Gao Y, Shen Y, Lin Y H, Chen L Q and Nan C W 2012 Phil. Trans. R. Soc. A 372 20120444 10.1098/rsta.2012.0444 Hu J-M, Shu L, Li Z, Gao Y, Shen Y, Lin Y H, Chen L Q and Nan C W Phil. Trans. R. Soc. 372 A 2012 20120444 [40] Martin M C, Shirane G, Endoh Y, Hirota K, Moritomo Y and Tokura Y 1996 Phys. Rev. B 53 14285 10.1103/PhysRevB.53.14285 Martin M C, Shirane G, Endoh Y, Hirota K, Moritomo Y and Tokura Y Phys. Rev. 0163-1829 53 B 1996 14285 [41] Urushibara A et al 1995 Phys. Rev. B 51 14103 10.1103/PhysRevB.51.14103 Urushibara A et al Phys. Rev. 0163-1829 51 B 1995 14103 [42] Xu Y 1991 Ferroelectric Materials and their Applications (Amsterdam: North-Holland) Xu Y Ferroelectric Materials and their Applications 1991 [43] Zhu Q X, Wang W, Yang S W, Li X M, Wang Y, Mabermeier H U, Luo H S, Chan H L W, Li X G and Zheng R K 2012 Appl. Phys. Lett. 101 172906 10.1063/1.4761948 Zhu Q X, Wang W, Yang S W, Li X M, Wang Y, Mabermeier H U, Luo H S, Chan H L W, Li X G and Zheng R K Appl. Phys. Lett. 101 172906 2012 [44] Vaz C A F 2012 J. Phys: Condens. Matter 24 333201 10.1088/0953-8984/24/33/333201 Vaz C A F J. Phys: Condens. Matter 0953-8984 24 33 333201 2012 [45] Duan C-G, Nan C-W, Jaswal S S and Tsymbal E Y 2009 Phys. Rev. B 79 140403 10.1103/PhysRevB.79.140403 Duan C-G, Nan C-W, Jaswal S S and Tsymbal E Y Phys. Rev. 79 B 140403 2009 [46] Burton J D and Tsymbal E Y 2010 Phys. Rev. B 82 161407 10.1103/PhysRevB.82.161407 Burton J D and Tsymbal E Y Phys. Rev. 82 B 161407 2010 [47] Zhang S et al 2012 Phys. Rev. Lett. 108 137203 10.1103/PhysRevLett.108.137203 Zhang S et al Phys. Rev. Lett. 108 137203 2012 [48] Lian J et al 2018 J. Appl. Phys. 124 064101 10.1063/1.5037057 Lian J et al J. Appl. Phys. 124 064101 2018 Funding Information: This work was supported in part by JST CREST Grant No. JPMJCR18J1, JSPS KAKENHI Grant Nos. JP17H03377, JP18F18353, the Asahi Glass Foundation, and the Kato Foundation for Promotion of Science. Publisher Copyright: © 2019 IOP Publishing Ltd.
PY - 2020
Y1 - 2020
N2 - We report on the inhomogeneous electric field response of the magnetization in a La1-xSrxMnO3 (LSMO) film on a ferroelectric [Pb(Mg1/2Nb2/3)O3]1-x-[PbTiO3]x (PMN-PT) substrate. X-ray diffraction patterns of the LSMO film confirm successful epitaxial growth of LSMO along the [0 0 1] orientation of PMN-PT, where a sudden lattice relaxation in the LSMO film occurs due to a large lattice mismatch. The LSMO film exhibits magnetic anisotropy that lies in-plane and isotropic in all directions of the plane with a Curie temperature of 345 K. The polarization versus electric field (P-E) loop shows that a sharp switching of electric dipoles occurs and the switching field decreases with decreasing maximum applied electric field. The coexistence of hysteresis-like (non-volatile) and butterfly-like (volatile) behavior of the voltage induced Kerr signal is observed. We consider that 109° switching of the ferroelectric domains is responsible for the rotation of magnetic easy axis that results in the hysteresis like behavior while 71° and 180° switching of the ferroelectric polarization has no effect on the magnetic anisotropy, leading to the butterfly-like behavior.
AB - We report on the inhomogeneous electric field response of the magnetization in a La1-xSrxMnO3 (LSMO) film on a ferroelectric [Pb(Mg1/2Nb2/3)O3]1-x-[PbTiO3]x (PMN-PT) substrate. X-ray diffraction patterns of the LSMO film confirm successful epitaxial growth of LSMO along the [0 0 1] orientation of PMN-PT, where a sudden lattice relaxation in the LSMO film occurs due to a large lattice mismatch. The LSMO film exhibits magnetic anisotropy that lies in-plane and isotropic in all directions of the plane with a Curie temperature of 345 K. The polarization versus electric field (P-E) loop shows that a sharp switching of electric dipoles occurs and the switching field decreases with decreasing maximum applied electric field. The coexistence of hysteresis-like (non-volatile) and butterfly-like (volatile) behavior of the voltage induced Kerr signal is observed. We consider that 109° switching of the ferroelectric domains is responsible for the rotation of magnetic easy axis that results in the hysteresis like behavior while 71° and 180° switching of the ferroelectric polarization has no effect on the magnetic anisotropy, leading to the butterfly-like behavior.
UR - http://www.scopus.com/inward/record.url?scp=85077776787&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85077776787&partnerID=8YFLogxK
U2 - 10.1088/1361-6463/ab50e7
DO - 10.1088/1361-6463/ab50e7
M3 - Article
AN - SCOPUS:85077776787
VL - 53
JO - Journal Physics D: Applied Physics
JF - Journal Physics D: Applied Physics
SN - 0022-3727
IS - 5
M1 - 054003
ER -