Abstract
We investigated the use of backscatter properties of atmospheric ice particles for space-borne lidar applications. We estimated the average backscattering coefficient (β), backscatter color ratio (χ), and depolarization ratio (δ) for ice particles with a wide range of effective radii for five randomly oriented three-dimensional (3D) and three quasi-horizontally oriented two-dimensional (2D) types of ice particle using physical optics and geometrical integral equation methods. This is the first study to estimate the lidar backscattering properties of quasihorizontally oriented non-pristine ice crystals. We found that the χ-δ relationship was useful for discriminating particle types using Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) data. The lidar ratio (S)-δ relationship, which is determined using space-borne high-spectral-resolution lidar products such as EarthCARE ATLID or future space-borne lidar missions, may also produce robust classification of ice particle types because it is complementary to the χ-δ relationship.
Original language | English |
---|---|
Pages (from-to) | 29178-29191 |
Number of pages | 14 |
Journal | Optics Express |
Volume | 28 |
Issue number | 20 |
DOIs | |
Publication status | Published - Sept 2020 |
All Science Journal Classification (ASJC) codes
- Atomic and Molecular Physics, and Optics