### Abstract

Self-stabilization is a strong property which guarantees that a network always resume a correct behavior starting from an arbitrary initial state. Weaker guarantees have later been introduced to cope with impossibility results: probabilistic stabilization only gives probabilistic convergence to a correct behavior. Also, weak-stabilization only gives the possibility of convergence. In this paper, we investigate the relative power of weak, self, and probabilistic stabilization, with respect to the set of problems that can be solved. We formally prove that in that sense, weak stabilization is strictly stronger that selfstabilization. Also, we refine previous results on weak stabilization to prove that, for practical schedule instances, a deterministic weak-stabilizing protocol can be turned into a probabilistic self-stabilizing one. This latter result hints at more practical use of weak-stabilization, as such algorithms are easier to design and prove than their (probabilistic) selfstabilizing counterparts.

Original language | English |
---|---|

Title of host publication | Proceedings - The 28th International Conference on Distributed Computing Systems, ICDCS 2008 |

Pages | 681-688 |

Number of pages | 8 |

DOIs | |

Publication status | Published - 2008 |

Event | 28th International Conference on Distributed Computing Systems, ICDCS 2008 - Beijing, China Duration: Jul 17 2008 → Jul 20 2008 |

### Publication series

Name | Proceedings - The 28th International Conference on Distributed Computing Systems, ICDCS 2008 |
---|

### Other

Other | 28th International Conference on Distributed Computing Systems, ICDCS 2008 |
---|---|

Country | China |

City | Beijing |

Period | 7/17/08 → 7/20/08 |

### All Science Journal Classification (ASJC) codes

- Hardware and Architecture
- Software

## Fingerprint Dive into the research topics of 'Weak vs. self vs. probabilistic stabilization'. Together they form a unique fingerprint.

## Cite this

*Proceedings - The 28th International Conference on Distributed Computing Systems, ICDCS 2008*(pp. 681-688). [4595942] (Proceedings - The 28th International Conference on Distributed Computing Systems, ICDCS 2008). https://doi.org/10.1109/ICDCS.2008.12