Weakening of the mid-latitude summer nighttime anomaly during geomagnetic storms

Huixin Liu, Mamoru Yamamoto

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)

Abstract

This brief report presents geomagnetic storm effects on the formation and characteristics of the midlatitude summer nighttime anomaly (MSNA). This anomaly is a phenomenon where the diurnal variation of the plasma density maximizes at night instead of day. Under disturbed geomagnetic conditions, the MSNA is found to have smaller spatial coverage, lower magnitude of the reversed diurnal cycle, and shorter duration of the nighttime enhancement. All these features demonstrate a weakening of the MSNA. In addition, the nighttime maximum tends to occur at earlier local time. These effects can be reasonably understood in the frame of storm-induced equatorward wind and the molecular-rich air it carries along with. For instance, the shrink of the spatial coverage is essentially a dominant effect of the molecular-rich air, which tends to deplete the plasma significantly on the poleward edge of the MSNA region. On the other hand, the smaller magnitude and the shorter duration seem to be mainly caused by the storm-induced equatorward wind. Storm effects presented here add further evidence to the pivot role of effective neutral wind in the formation of MSNA.

Original languageEnglish
Pages (from-to)371-375
Number of pages5
Journalearth, planets and space
Volume63
Issue number4
DOIs
Publication statusPublished - 2011

All Science Journal Classification (ASJC) codes

  • Geology
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'Weakening of the mid-latitude summer nighttime anomaly during geomagnetic storms'. Together they form a unique fingerprint.

Cite this