Weakly supervised cell instance segmentation by propagating from detection response

Kazuya Nishimura, Dai Fei Elmer Ker, Ryoma Bise

Research output: Chapter in Book/Report/Conference proceedingConference contribution

17 Citations (Scopus)

Abstract

Cell shape analysis is important in biomedical research. Deep learning methods may perform to segment individual cells if they use sufficient training data that the boundary of each cell is annotated. However, it is very time-consuming for preparing such detailed annotation for many cell culture conditions. In this paper, we propose a weakly supervised method that can segment individual cell regions who touch each other with unclear boundaries in dense conditions without the training data for cell regions. We demonstrated the efficacy of our method using several data-set including multiple cell types captured by several types of microscopy. Our method achieved the highest accuracy compared with several conventional methods. In addition, we demonstrated that our method can perform without any annotation by using fluorescence images that cell nuclear were stained as training data. Code is publicly available in https://github.com/naivete5656/WSISPDR.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer Assisted Intervention – MICCAI 2019 - 22nd International Conference, Proceedings
EditorsDinggang Shen, Pew-Thian Yap, Tianming Liu, Terry M. Peters, Ali Khan, Lawrence H. Staib, Caroline Essert, Sean Zhou
PublisherSpringer
Pages649-657
Number of pages9
ISBN (Print)9783030322380
DOIs
Publication statusPublished - 2019
Event22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019 - Shenzhen, China
Duration: Oct 13 2019Oct 17 2019

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume11764 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019
Country/TerritoryChina
CityShenzhen
Period10/13/1910/17/19

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • Computer Science(all)

Fingerprint

Dive into the research topics of 'Weakly supervised cell instance segmentation by propagating from detection response'. Together they form a unique fingerprint.

Cite this