Well-Ordered 4CzIPN ((4s,6s)-2,4,5,6-Tetra(9-H-carbazol-9-yl)isophthalonitrile) Layers: Molecular Orientation, Electronic Structure, and Angular Distribution of Photoluminescence

Y. Hasegawa, Y. Yamada, M. Sasaki, T. Hosokai, H. Nakanotani, C. Adachi

Research output: Contribution to journalArticlepeer-review

13 Citations (Scopus)

Abstract

We fabricated a well-ordered homogeneous monolayer of disk-shaped, carbazolyl dicyanobenzene (CDCB)-based thermally activated delayed fluorescence (TADF) molecule, i.e., 4CzIPN((4s,6s)-2,4,5,6-tetra(9Hcarbazol-9-yl)isophthalonitrile) at room temperature on flat Ag(111), Au(111), and Cu(111) surfaces. The second layer of the 4CzIPN was also found to be well ordered. The electronic states of the well-ordered monolayer and multilayer of 4CzIPN were found to be nearly unchanged from that of the isolated molecule calculated by the density functional theory (DFT), suggesting that the ordered layers retain the TADF properties. Indeed, we demonstrated the delayed fluorescence and the nearly perfect in-plane alignment of the transition dipole moment of a 4CzIPN thin film on glass substrate even in an ambient condition. These results indicate that the well-ordered films of the disc-shaped carbazole-based TADF molecules could potentially be utilized in organic light-emitting diode (OLED) devices with high light outcoupling efficiency.

Original languageEnglish
Pages (from-to)863-867
Number of pages5
JournalJournal of Physical Chemistry Letters
Volume9
Issue number4
DOIs
Publication statusPublished - Feb 15 2018

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Physical and Theoretical Chemistry

Fingerprint Dive into the research topics of 'Well-Ordered 4CzIPN ((4s,6s)-2,4,5,6-Tetra(9-H-carbazol-9-yl)isophthalonitrile) Layers: Molecular Orientation, Electronic Structure, and Angular Distribution of Photoluminescence'. Together they form a unique fingerprint.

Cite this