Wettability of amorphous diamond-like carbons deposited on Si and PMMA in pulse-modulated plasmas

Ta Lun Sung, Jason Hsiao Chun Yang, Kungen Teii, Shinriki Teii, Chung Ming Liu, Wan Yu Tseng, Li Deh Lin, Shigeru Ono

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

Pulse-modulated direct-current methane plasmas are used to deposit amorphous diamond-like carbon films on Si and dentistry-use polymethyl methacrylate (PMMA) substrates as a function of the negative pulse voltage applied to the substrate (V max). The films on PMMA show a transition from diamond-like to more graphitic carbon in the Raman spectra with increasing V max, dissimilar to those on Si. This is attributed to easy deformation of PMMA, leading to the low compressive stress of the films (1 to 2 GPa). The contact angle of water for the films on both Si and PMMA is large, ranging from 79° to 94° almost independent of V max, confirming that the films are hydrophobic despite the difference in carbon bonding state. The large dispersion component (41-43 mJ/m 2) of the surface free energy of the films measured from the contact angle of water and 1-bromonaphthalene indicates the high mass density of the films. The small polar component (0.2-3.5 mJ/m 2) is attributed to hydrogen saturation of the surface sites forming nonpolar C-H bonds and, thus, responsible for the hydrophobic behavior.

Original languageEnglish
Article numberA12
Pages (from-to)1837-1842
Number of pages6
JournalIEEE Transactions on Plasma Science
Volume40
Issue number7 PART 1
DOIs
Publication statusPublished - 2012

All Science Journal Classification (ASJC) codes

  • Nuclear and High Energy Physics
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Wettability of amorphous diamond-like carbons deposited on Si and PMMA in pulse-modulated plasmas'. Together they form a unique fingerprint.

Cite this