Whole-mount MeFISH: A novel technique for simultaneous visualization of specific DNA methylation and protein/RNA expression

Hirosuke Shiura, Akimitsu Okamoto, Hiroyuki Sasaki, Kuniya Abe

    Research output: Contribution to journalArticlepeer-review

    5 Citations (Scopus)

    Abstract

    To understand the spatiotemporal changes in cellular status that occur during embryonic development, it is desirable to detect simultaneously the expression of genes, proteins, and epigenetic modifications in individual embryonic cells. A technique termed methylation-specific fluorescence in situ hybridization (MeFISH) was developed recently that can visualize the methylation status of specific DNA sequences in cells fixed on a glass slide. Here, we adapted this glass slide-based MeFISH to the study of intact embryos, and established a method called whole-mount MeFISH. This method can be applied to any DNA sequences in theory and, as a proof-of-concept experiment, we examined the DNA methylation status of satellite repeats in developing mouse primordial germ cells, in which global DNA demethylation is known to take place, and obtained a result that was consistent with previous findings, thus validating the MeFISH method. We also succeeded in combining whole-mount MeFISH with immunostaining or RNA fluorescence in situ hybridization (RNA-FISH) techniques by adopting steps to retain signals of RNA-FISH or immunostaining after harsh denaturation step of MeFISH. The combined methods enabled the simultaneous visualization of DNA methylation and protein or RNA expression at single-cell resolution without destroying embryonic and nuclear structures. This whole-mount MeFISH technique should facilitate the study of the dynamics of DNA methylation status during embryonic development with unprecedented resolution.

    Original languageEnglish
    Article numbere95750
    JournalPloS one
    Volume9
    Issue number4
    DOIs
    Publication statusPublished - Apr 22 2014

    All Science Journal Classification (ASJC) codes

    • Biochemistry, Genetics and Molecular Biology(all)
    • Agricultural and Biological Sciences(all)
    • General

    Fingerprint Dive into the research topics of 'Whole-mount MeFISH: A novel technique for simultaneous visualization of specific DNA methylation and protein/RNA expression'. Together they form a unique fingerprint.

    Cite this