Work hardening mechanism in soft particle dispersion ferritic steel

Nobuo Nakada, Masahiro Murakami, Toshihiro Tsuchiyama, Setsuo Takaki

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)

Abstract

The work hardening behavior was investigated in ferritic steels containing hard particles or soft Cu particles with various volume fractions and particle diameters, and then the effect of plastically deformable soft particles on the work hardening was evaluated in terms of the accumulation of GN dislocations. The amount of work hardening and dislocation density increased with an increase of volume fraction of dispersion particles and a decrease of particle diameter in hard particle dispersion steel. On the other hand, in soft Cu particle dispersion steel, the effect of volume fraction and particle diameter on work hardening behavior was relatively small. TEM observation suggested that stress relaxation around particle takes place by plastic deformation of Cu particle itself. In order to consider the effect of plastic deformation of Cu particles on accumulation of GN dislocations, "particle plastic accommodation parameter" was proposed to modify the Ashby's work hardening theory. As a result, the amount of work hardening was successfully predicted for both the hard and soft particle dispersion steels.

Original languageEnglish
Title of host publicationTHERMEC 2011
Pages2199-2204
Number of pages6
DOIs
Publication statusPublished - Jan 30 2012
Event7th International Conference on Processing and Manufacturing of Advanced Materials, THERMEC'2011 - Quebec City, QC, Canada
Duration: Aug 1 2011Aug 5 2011

Publication series

NameMaterials Science Forum
Volume706-709
ISSN (Print)0255-5476

Other

Other7th International Conference on Processing and Manufacturing of Advanced Materials, THERMEC'2011
CountryCanada
CityQuebec City, QC
Period8/1/118/5/11

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Work hardening mechanism in soft particle dispersion ferritic steel'. Together they form a unique fingerprint.

Cite this