X-ray diffraction peak broadening and lattice strain in LaNi5-based alloys

Yumiko Nakamura, Keisuke Oguro, Itsuki Uehara, Etsuo Akiba

Research output: Contribution to journalArticlepeer-review

47 Citations (Scopus)

Abstract

Peak broadening in X-ray powder diffraction (XRD) profiles of LaNi5-based alloys after hydriding and dehydriding processes was investigated in order to clarify the mechanism of formation of lattice strain in hydriding and dehydriding. The Rietveld method was used to evaluate the degree of peak broadening and to determine anisotropic peak broadening axis for LaNi5 and LaNi5-xMα (M: Mn, Fe, Cu, Al; α = 0.25, 0.5) before hydriding, after activation and after 1000 hydriding-dehydriding cycles. All the alloys studied showed anisotropic broadening vectors of the same direction 〈110〉 after activation. The degree of the peak broadening, however, strongly depended on the substitution elements. Hydriding-dehydriding cycles did not influence the direction of the anisotropic peak broadening axis, while both anisotropic and isotropic peak broadening increased with number of cycles. It was found that the lattice strain analyzed from the peak broadening in X-ray diffraction profiles corresponded to dislocations with Burgers vectors 〈hk0〉 observed by transmission electron microscope.

Original languageEnglish
Pages (from-to)138-145
Number of pages8
JournalJournal of Alloys and Compounds
Volume298
Issue number1-2
DOIs
Publication statusPublished - Feb 28 2000
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Mechanics of Materials
  • Mechanical Engineering
  • Metals and Alloys
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'X-ray diffraction peak broadening and lattice strain in LaNi5-based alloys'. Together they form a unique fingerprint.

Cite this