Zoledronic Acid Enhances Lipopolysaccharide-Stimulated Proinflammatory Reactions through Controlled Expression of SOCS1 in Macrophages

Daichi Muratsu, Daigo Yoshiga, Takaharu Taketomi, Tomohiro Onimura, Yoshihiro Seki, Akinobu Matsumoto, Seiji Nakamura

Research output: Contribution to journalArticlepeer-review

30 Citations (Scopus)

Abstract

Bisphosphonate-related osteonecrosis of the jaw (BRONJ) is a serious side effect of nitrogen-containing bisphosphonate (NBP) use. Many studies have shown that BRONJ is limited to the jawbone and does not occur in the other bones. We hypothesized that BRONJ is related to local bacterial iections and involves the innate immune system. To examine the relationship between BRONJ and innate immunity, we examined the effects of NBPs on macrophages, one of the important cell types in innate immunity. The expression of toll-like receptor-4 (TLR4) in cells after pretreatment with zoledronic acid (ZOL) did not considerably differ from that in untreated control cells. However, cytokine levels and nitric oxide (NO) production increased after pretreatment with ZOL. Furthermore, ZOL induced NF-κB activation by enhancing IκB-α degradation. Lipopolysaccharide (LPS)-induced apoptosis also increased after pretreatment with ZOL. This effect was mediated by a reduction of suppressor of cytokine signaling-1 (SOCS1), which is a negative regulator of myeloid differentiation primary response gene 88 (MyD 88)-dependent signaling. These results suggest that ZOL induced excessive innate immune response and proinflammatory cytokine production and that these processes may be involved in the bone destruction observed in BRONJ.

Original languageEnglish
Article numbere67906
JournalPloS one
Volume8
Issue number7
DOIs
Publication statusPublished - Jul 9 2013

All Science Journal Classification (ASJC) codes

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • General

Fingerprint Dive into the research topics of 'Zoledronic Acid Enhances Lipopolysaccharide-Stimulated Proinflammatory Reactions through Controlled Expression of SOCS1 in Macrophages'. Together they form a unique fingerprint.

Cite this